
Adafruit Feather 32u4 Bluefruit LE
Created by lady ada

Last updated on 2020-06-15 03:51:24 PM EDT

Overview

Feather is the new development board from Adafruit, and like it's namesake it is thin, light, and lets you fly! We
designed Feather to be a new standard for portable microcontroller cores.

This is the Adafruit Feather 32u4 Bluefruit - our take on an 'all-in-one' Arduino-compatible + Bluetooth Low Energy with
built in USB and battery charging. Its an Adafruit Feather 32u4 with a BTLE module, ready to rock! We have other
boards in the Feather family, check'em out here (https://adafru.it/jAQ)

Bluetooth Low Energy is the hottest new low-power, 2.4GHz spectrum wireless protocol. In particular, its the only
wireless protocol that you can use with iOS without needing special certification and it's supported by all modern smart
phones. This makes it excellent for use in portable projects that will make use of an iOS or Android phone or tablet. It
also is supported in Mac OS X and Windows 8+

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 8 of 211

https://www.adafruit.com/categories/777

At the Feather 32u4's heart is at ATmega32u4 clocked at 8 MHz and at 3.3V logic, a chip setup we've had tons of
experience with as it's the same as the Flora (https://adafru.it/dVl). This chip has 32K of flash and 2K of RAM, with built
in USB so not only does it have a USB-to-Serial program & debug capability built in with no need for an FTDI-like chip, it
can also act like a mouse, keyboard, USB MIDI device, etc.

To make it easy to use for portable projects, we added a connector for any of our 3.7V Lithium polymer batteries and
built in battery charging. You don't need a battery, it will run just fine straight from the micro USB connector. But, if you
do have a battery, you can take it on the go, then plug in the USB to recharge. The Feather will automatically switch
over to USB power when its available. We also tied the battery thru a divider to an analog pin, so you can measure and

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 9 of 211

https://www.adafruit.com/product/659

monitor the battery voltage to detect when you need a recharge.

Here's some handy specs! Like all Feather 32u4's you get:

Measures 2.0" x 0.9" x 0.28" (51mm x 23mm x 8mm) without headers soldered in
Light as a (large?) feather - 5.7 grams
ATmega32u4 @ 8MHz with 3.3V logic/power
3.3V regulator with 500mA peak current output
USB native support, comes with USB bootloader and serial port debugging
You also get tons of pins - 20 GPIO pins
Hardware Serial, hardware I2C, hardware SPI support
7 x PWM pins
10 x analog inputs
Built in 100mA lipoly charger with charging status indicator LED
Pin #13 red LED for general purpose blinking
Power/enable pin
4 mounting holes
Reset button

The Feather 32u4 Bluefruit LE uses the extra space left over to add our excellent Bluefruit BTLE module + two status
indicator LEDs

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 10 of 211

The Power of Bluefruit LE

The Bluefruit LE module is an nRF51822 chipset from Nordic, programmed with multi-function code that can do quite a
lot! For most people, they'll be very happy to use the standard Nordic UART RX/TX connection profile. In this profile,
the Bluefruit acts as a data pipe, that can 'transparently' transmit back and forth from your iOS or Android device. You
can use our iOS App (https://adafru.it/iCi) or Android App (https://adafru.it/f4G), or write your own to communicate with
the UART service (https://adafru.it/iCF).

The board is capable of much more than just sending strings over the air! Thanks to an easy to learn AT command
set (https://adafru.it/iCG), you have full control over how the device behaves, including the ability to define and
manipulate your own GATT Services and Characteristics (https://adafru.it/iCH), or change the way that the device
advertises itself for other Bluetooth Low Energy devices to see. You can also use the AT commands to query the die
temperature, check the battery voltage, and more, check the connection RSSI or MAC address, and tons more. Really,
way too long to list here!

Use the Bluefruit App to get your project started

Using our Bluefruit iOS App (https://adafru.it/iCi) or Android App (https://adafru.it/f4G), you can quickly get your project
prototyped by using your iOS or Android phone/tablet as a controller. We have a color picker (https://adafru.it/iCI),
quaternion/accelerometer/gyro/magnetometer or location (GPS) (https://adafru.it/iCI), and an 8-button control game
pad (https://adafru.it/iCI). This data can be read over BLE and piped into the ATmega32u4 chip for processing & control

You can do a lot more too!

The Bluefruit can also act like an HID Keyboard (https://adafru.it/iOA) (for devices that support BLE HID)
Can become a BLE Heart Rate Monitor (https://adafru.it/iOB) (a standard profile for BLE) - you just need to add the
pulse-detection circuitry
Turn it into a UriBeacon (https://adafru.it/iOC), the Google standard for Bluetooth LE beacons. Just power it and
the 'Friend will bleep out a URL to any nearby devices with the UriBeacon app installed.
Built in over-the-air bootloading capability so we can keep you updated with the hottest new
firmware (https://adafru.it/iOD). Use any Android or iOS device to get updates and install them. This will update
the native code on the BLE module, to add new wireless capabilities, not program the ATmega chip.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 11 of 211

file:///bluefruit-le-connect-for-ios
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect&hl=en
file:///introducing-the-adafruit-bluefruit-le-uart-friend/uart-service
file:///introducing-the-adafruit-bluefruit-le-uart-friend/command-mode-1
file:///introducing-the-adafruit-bluefruit-le-uart-friend/ble-gatt
file:///bluefruit-le-connect-for-ios
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect&hl=en
file:///bluefruit-le-connect-for-ios/controller#color-picker
file:///bluefruit-le-connect-for-ios/controller#sensors
file:///bluefruit-le-connect-for-ios/controller#control-pad
file:///introducing-the-adafruit-bluefruit-spi-breakout/hidkeyboard
file:///introducing-the-adafruit-bluefruit-spi-breakout/heartratemonitor
file:///introducing-the-adafruit-bluefruit-spi-breakout/uribeacon
file:///introducing-the-adafruit-bluefruit-spi-breakout/dfu-updates

Comes fully assembled and tested, with a USB bootloader that lets you quickly use it with the Arduino IDE. We also
toss in some header so you can solder it in and plug into a solderless breadboard. Lipoly battery, MicroSD card and
USB cable not included (but we do have lots of options in the shop if you'd like!)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 12 of 211

Pinouts

The Feather 32u4 Bluefruit LE is chock-full of microcontroller goodness. There's also a lot of pins and ports. We'll take
you a tour of them now!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 13 of 211

Power Pins

GND - this is the common ground for all power and logic
BAT - this is the positive voltage to/from the JST jack for the optional Lipoly battery
USB - this is the positive voltage to/from the micro USB jack if connected
EN - this is the 3.3V regulator's enable pin. It's pulled up, so connect to ground to disable the 3.3V regulator
3V - this is the output from the 3.3V regulator, it can supply 500mA peak

Logic pins

This is the general purpose I/O pin set for the microcontroller. All logic is 3.3V

#0 / RX - GPIO #0, also receive (input) pin for Serial1 and Interrupt #2
#1 / TX - GPIO #1, also transmit (output) pin for Serial1 and Interrupt #3
#2 / SDA - GPIO #2, also the I2C (Wire) data pin. There's no pull up on this pin by default so when using with I2C,
you may need a 2.2K-10K pullup. Also Interrupt #1
#3 / SCL - GPIO #3, also the I2C (Wire) clock pin. There's no pull up on this pin by default so when using with I2C,
you may need a 2.2K-10K pullup. Can also do PWM output and act as Interrupt #0.

The DFU pin is accidentally labeled GND on the bottom, sorry about that! it should be labeled DFU, dont use it
as a GND�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 14 of 211

#5 - GPIO #5, can also do PWM output
#6 - GPIO #6, can also do PWM output and analog input A7
#9 - GPIO #9, also analog input A9 and can do PWM output. This analog input is connected to a voltage divider
for the lipoly battery so be aware that this pin naturally 'sits' at around 2VDC due to the resistor divider
#10 - GPIO #10, also analog input A10 and can do PWM output.
#11 - GPIO #11, can do PWM output.
#12 - GPIO #12, also analog input A11
#13 - GPIO #13, can do PWM output and is connected to the red LED next to the USB jack
A0 thru A5 - These are each analog input as well as digital I/O pins.
SCK/MOSI/MISO - These are the hardware SPI pins, used by the Bluefruit LE module too! You can use them as
everyday GPIO pins if you don't activate the Bluefruit and keep the BLE CS pin high. However, we really
recommend keeping them free as they should be kept available for the Bluefruit. If they are used, make sure its
with a device that will kindly share the SPI bus! Also used to reprogram the chip with an AVR programmer if you
need.

Bluefruit LE Module + Indicator LEDs

Since not all pins can be brought out to breakouts, due to the small size of the Feather, we use these to control the
BLE module

#8 - used as the Bluefruit CS (chip select) pin
#7 - used as the Bluefruit IRQ (interrupt request) pin.
#4 - used as the Bluefruit Reset pin

Since these are not brought out there should be no risk of using them by accident!

Other Pins!
Top Side

RST - this is the Reset pin, tie to ground to manually reset the AVR, as well as launch the bootloader manually
ARef - the analog reference pin. Normally the reference voltage is the same as the chip logic voltage (3.3V) but if
you need an alternative analog reference, connect it to this pin and select the external AREF in your firmware.
Can't go higher than 3.3V!
DFU - this is the force-DFU (device firmware upgrade) pin for over-the-air updates to the Bluefruit module. You
probably don't need to use this but its available if you need to upgrade! Check out the DFU Bluefruit Upgrades
page for how to use it. Otherwise, keep it disconnected.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 15 of 211

Bottom Side

On the back we also have SWDIO/SWCLK/RESET pins, these are used for programming the Bluefruit LE module itself.

SWD Debug Input

You normally should not connect to the SWDIO and SWCLK pins unless you want to wipe out the Bluefruit LE module
firmware for some reason, such as flashing an entirely custom firmware image written by yourself, though this is
entirely at your own risk since it will wipe the Bluefruit firmware! Flashing firmware or using the SWD interface will
require something like a Segger J-Link EDU Mini (https://adafru.it/yDp) to communicate via the debug controller inside
the nRF51822.

Factory Reset

The Reset pad (not to be confused with the 0.1" circular RST pin!) is the factory reset pin, which is also rarely used, but
 you can use it to set the module back to the factory default settings if it gets really messed up. Connect the 'Reset' pin
to GND when you boot the device up to force a factory reset in HW (via the bootloader).

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 16 of 211

https://www.adafruit.com/product/3571

Assembly

We ship Feathers fully tested but without headers attached - this gives you the most flexibility on choosing how to use
and configure your Feather

Header Options!

Before you go gung-ho on soldering, there's a few options to consider!

The first option is soldering in plain male headers, this

lets you plug in the Feather into a solderless breadboard

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 17 of 211

https://learn.adafruit.com/assets/30192
https://learn.adafruit.com/assets/30201

Another option is to go with socket female headers. This

won't let you plug the Feather into a breadboard but it

will let you attach featherwings very easily

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 18 of 211

https://learn.adafruit.com/assets/30195
https://learn.adafruit.com/assets/30196

We also have 'slim' versions of the female headers, that

are a little shorter and give a more compact shape

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 19 of 211

https://learn.adafruit.com/assets/30197
https://learn.adafruit.com/assets/30198

Finally, there's the "Stacking Header" option. This one is

sort of the best-of-both-worlds. You get the ability to

plug into a solderless breadboard and plug a

featherwing on top. But its a little bulky

Soldering in Plain Headers

Prepare the header strip:
Cut the strip to length if necessary. It will be easier to

solder if you insert it into a breadboard - long pins down

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 20 of 211

https://learn.adafruit.com/assets/30199
https://learn.adafruit.com/assets/30200
https://learn.adafruit.com/assets/30183

Add the breakout board:
Place the breakout board over the pins so that the short

pins poke through the breakout pads

And Solder!
Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide to

Excellent Soldering (https://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 21 of 211

https://learn.adafruit.com/assets/30184
https://learn.adafruit.com/assets/30185
https://learn.adafruit.com/assets/30186
http://learn.adafruit.com/adafruit-guide-excellent-soldering

Solder the other strip as well.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 22 of 211

https://learn.adafruit.com/assets/30187
https://learn.adafruit.com/assets/30188
https://learn.adafruit.com/assets/30189

You're done! Check your solder joints visually and

continue onto the next steps

Soldering on Female Header

Tape In Place
For sockets you'll want to tape them in place so when

you flip over the board they don't fall out

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 23 of 211

https://learn.adafruit.com/assets/30190
https://learn.adafruit.com/assets/30203

Flip & Tack Solder
After flipping over, solder one or two points on each

strip, to 'tack' the header in place

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 24 of 211

https://learn.adafruit.com/assets/30204
https://learn.adafruit.com/assets/30205
https://learn.adafruit.com/assets/30206

And Solder!
Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide to

Excellent Soldering (https://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 25 of 211

https://learn.adafruit.com/assets/30207
https://learn.adafruit.com/assets/30208
https://learn.adafruit.com/assets/30209
http://learn.adafruit.com/adafruit-guide-excellent-soldering

You're done! Check your solder joints visually and

continue onto the next steps

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 26 of 211

https://learn.adafruit.com/assets/30210
https://learn.adafruit.com/assets/30211

Power
Management

Battery + USB Power

We wanted to make the Feather easy to power both when connected to a computer as well as via battery. There's two
ways to power a Feather. You can connect with a MicroUSB cable (just plug into the jack) and the Feather will regulate
the 5V USB down to 3.3V. You can also connect a 4.2/3.7V Lithium Polymer (Lipo/Lipoly) or Lithium Ion (LiIon) battery
to the JST jack. This will let the Feather run on a rechargable battery. When the USB power is powered, it will
automatically switch over to USB for power, as well as start charging the battery (if attached) at 100mA. This happens
'hotswap' style so you can always keep the Lipoly connected as a 'backup' power that will only get used when USB
power is lost.

The JST connector polarity is matched to Adafruit LiPoly batteries. Using wrong polarity batteries can destroy
your Feather�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 27 of 211

The above shows the Micro USB jack (left), Lipoly JST jack (top left), as well as the 3.3V regulator and changeover
diode (just to the right of the JST jack) and the Lipoly charging circuitry (to the right of the Reset button). There's also a
CHG LED, which will light up while the battery is charging. This LED might also flicker if the battery is not connected.

Power supplies

You have a lot of power supply options here! We bring out the BAT pin, which is tied to the lipoly JST connector, as
well as USB which is the +5V from USB if connected. We also have the 3V pin which has the output from the 3.3V
regulator. We use a 500mA peak SPX3819. While you can get 500mA from it, you can't do it continuously from 5V as it
will overheat the regulator. It's fine for, say, powering an ESP8266 WiFi chip or XBee radio though, since the current
draw is 'spiky' & sporadic.

Measuring Battery

If you're running off of a battery, chances are you wanna know what the voltage is at! That way you can tell when the
battery needs recharging. Lipoly batteries are 'maxed out' at 4.2V and stick around 3.7V for much of the battery life,
then slowly sink down to 3.2V or so before the protection circuitry cuts it off. By measuring the voltage you can quickly

The charge LED is automatically driven by the Lipoly charger circuit. It will try to detect a battery and is
expecting one to be attached. If there isn't one it may flicker once in a while when you use power because it's
trying to charge a (non-existant) battery. It's not harmful, and its totally normal!

�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 28 of 211

tell when you're heading below 3.7V

To make this easy we stuck a double-100K resistor divider on the BAT pin, and connected it to D9 (a.k.a analog #9 A9).
You can read this pin's voltage, then double it, to get the battery voltage.

#define VBATPIN A9

float measuredvbat = analogRead(VBATPIN);
measuredvbat *= 2; // we divided by 2, so multiply back
measuredvbat *= 3.3; // Multiply by 3.3V, our reference voltage
measuredvbat /= 1024; // convert to voltage
Serial.print("VBat: "); Serial.println(measuredvbat);

This voltage will 'float' at 4.2V when no battery is plugged in, due to the lipoly charger output, so its not a good way to
detect if a battery is plugged in or not (there is no simple way to detect if a battery is plugged in)

ENable pin

If you'd like to turn off the 3.3V regulator, you can do that with the EN(able) pin. Simply tie this pin to Ground and it will
disable the 3V regulator. The BAT and USB pins will still be powered

Alternative Power Options

The two primary ways for powering a feather are a 3.7/4.2V LiPo battery plugged into the JST port or a USB power
cable.

If you need other ways to power the Feather, here's what we recommend:

For permanent installations, a 5V 1A USB wall adapter (https://adafru.it/duP) will let you plug in a USB cable for
reliable power
For mobile use, where you don't want a LiPoly, use a USB battery pack! (https://adafru.it/e2q)
If you have a higher voltage power supply, use a 5V buck converter (https://adafru.it/DHs) and wire it to a USB
cable's 5V and GND input (https://adafru.it/DHu)

Here's what you cannot do:

Do not use alkaline or NiMH batteries and connect to the battery port - this will destroy the LiPoly charger and

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 29 of 211

https://www.adafruit.com/product/501
https://www.adafruit.com/product/1959
https://www.adafruit.com/?q=5V%20buck
https://www.adafruit.com/product/3972

there's no way to disable the charger
Do not use 7.4V RC batteries on the battery port - this will destroy the board

The Feather is not designed for external power supplies - this is a design decision to make the board compact and low
cost. It is not recommended, but technically possible:

Connect an external 3.3V power supply to the 3V and GND pins. Not recommended, this may cause unexpected
behavior and the EN pin will no longer. Also this doesn't provide power on BAT or USB and some
Feathers/Wings use those pins for high current usages. You may end up damaging your Feather.
Connect an external 5V power supply to the USB and GND pins. Not recommended, this may cause unexpected
behavior when plugging in the USB port because you will be back-powering the USB port, which could confuse
or damage your computer.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 30 of 211

Arduino IDE Setup

The first thing you will need to do is to download the latest release of the Arduino IDE. You will need to be using
version 1.8 or higher for this guide

https://adafru.it/f1P

https://adafru.it/f1P

After you have downloaded and installed the latest version of Arduino IDE, you will need to start the IDE and navigate
to the Preferences menu. You can access it from the File menu in Windows or Linux, or the Arduino menu on OS X.

A dialog will pop up just like the one shown below.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 31 of 211

http://www.arduino.cc/en/Main/Software

We will be adding a URL to the new Additional Boards Manager URLs option. The list of URLs is comma separated,
and you will only have to add each URL once. New Adafruit boards and updates to existing boards will automatically be
picked up by the Board Manager each time it is opened. The URLs point to index files that the Board Manager uses to
build the list of available & installed boards.

To find the most up to date list of URLs you can add, you can visit the list of third party board URLs on the Arduino IDE
wiki (https://adafru.it/f7U). We will only need to add one URL to the IDE in this example, but you can add multiple URLS
by separating them with commas. Copy and paste the link below into the Additional Boards Manager URLs option in
the Arduino IDE preferences.

https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 32 of 211

https://github.com/arduino/Arduino/wiki/Unofficial-list-of-3rd-party-boards-support-urls#list-of-3rd-party-boards-support-urls

Here's a short description of each of the Adafruit supplied packages that will be available in the Board Manager when
you add the URL:

Adafruit AVR Boards - Includes support for Flora, Gemma, Feather 32u4, Trinket, & Trinket Pro.
Adafruit SAMD Boards - Includes support for Feather M0 and M4, Metro M0 and M4, ItsyBitsy M0 and M4, Circuit
Playground Express, Gemma M0 and Trinket M0
Arduino Leonardo & Micro MIDI-USB - This adds MIDI over USB support for the Flora, Feather 32u4, Micro and
Leonardo using the arcore project (https://adafru.it/eSI).

If you have multiple boards you want to support, say ESP8266 and Adafruit, have both URLs in the text box separated
by a comma (,)

Once done click OK to save the new preference settings. Next we will look at installing boards with the Board
Manager.

Now continue to the next step to actually install the board support package!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 33 of 211

https://github.com/rkistner/arcore

Using with Arduino IDE

Since the Feather 32u4 uses an ATmega32u4 chip running at 8 MHz, you can pretty easily get it working with the
Arduino IDE. Many libraries (including the popular ones like NeoPixels and display) work great with the '32u4 and 8
MHz clock speed.

Now that you have added the appropriate URLs to the Arduino IDE preferences, you can open the Boards Manager by
navigating to the Tools->Board menu.

Once the Board Manager opens, click on the category drop down menu on the top left hand side of the window and
select Contributed. You will then be able to select and install the boards supplied by the URLs added to the
prefrences. In the example below, we are installing support for Adafruit AVR Boards, but the same applies to all
boards installed with the Board Manager.

Next, quit and reopen the Arduino IDE to ensure that all of the boards are properly installed. You should now be able
to select and upload to the new boards listed in the Tools->Board menu.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 34 of 211

Install Drivers (Windows 7 Only)

When you plug in the Feather, you'll need to possibly install a driver

Windows 10 folks can skip this, the drivers now come built into Windows 10!

Click below to download our Driver Installer

https://adafru.it/AB0

https://adafru.it/AB0

Download and run the installer

Run the installer! Since we bundle the SiLabs and FTDI drivers as well, you'll need to click through the license

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 35 of 211

https://github.com/adafruit/Adafruit_Windows_Drivers/releases/latest/adafruit_drivers_*.exe

Select which drivers you want to install:

Click Install to do the installin'

Blink

Now you can upload your first blink sketch!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 36 of 211

Plug in the Feather 32u4 and wait for it to be recognized by the OS (just takes a few seconds). It will create a
serial/COM port, you can now select it from the dropdown, it'll even be 'indicated' as Feather 32u4!

Now load up the Blink example

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

And click upload! That's it, you will be able to see the LED blink rate change as you adapt the delay() calls.

Manually bootloading

If you ever get in a 'weird' spot with the bootloader, or you have uploaded code that crashes and doesn't auto-reboot
into the bootloader, double-click the RST button to get back into the bootloader. The red LED will pulse, so you know
that its in bootloader mode. Do the reset button double-press right as the Arduino IDE says its attempting to upload the
sketch, when you see the Yellow Arrow lit and the Uploading... text in the status bar.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 37 of 211

Don't click the reset button before uploading, unlike other bootloaders you want this one to run at the time Arduino is
trying to upload

Ubuntu & Linux Issue Fix

If you're on Linux, and are seeing multi-second delays connecting to the serial console, or are seeing "AT" and other
gibberish when you connect, follow the steps on this page. (https://adafru.it/iOE)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 38 of 211

file:///adafruit-arduino-ide-setup/linux-setup#udev-rules

Installing BLE Library

Install the Adafruit nRF51 BLE Library

In order to try out our demos, you'll need to download the Adafruit BLE library for the nRF51 based modules such as this
one (a.k.a. Adafruit_BluefruitLE_nRF51)

You can check out the code here at github, (https://adafru.it/f4V) but its likely easier to just download via the Arduino
library manager.

Open up the Arduino library manager:

Search for the Adafruit BluefruitLE nRF51 library and install it

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://adafru.it/aYM)

Check that you see the library folder with examples:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 39 of 211

https://github.com/adafruit/Adafruit_BluefruitLE_nRF51
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Run first example

Lets begin with the beginner project, which we can use to do basic tests. To open the ATCommand sketch, click on
the File > Examples > Adafruit_BluefruitLE_nRF51 folder in the Arduino IDE and select atcommand:

This will open up a new instance of the example in the IDE, as shown below:

Go to the second tab labeled BluefruitConfig.h and find these lines

Don't upload the sketch yet! You will have to begin by changing the configuration.�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 40 of 211

// SHARED SPI SETTINGS
// --
// The following macros declare the pins to use for HW and SW SPI communication.
// SCK, MISO and MOSI should be connected to the HW SPI pins on the Uno when
// using HW SPI. This should be used with nRF51822 based Bluefruit LE modules
// that use SPI (Bluefruit LE SPI Friend).
// --
#define BLUEFRUIT_SPI_CS 8
#define BLUEFRUIT_SPI_IRQ 7
#define BLUEFRUIT_SPI_RST 6 // Optional but recommended, set to -1 if unused

And change the last line to:

#define BLUEFRUIT_SPI_RST 4 // Optional but recommended, set to -1 if unused

(The Bluefruit Feather has the reset on digital #4 not #6)

Now go back to the main tab atcommand and look for this line of code

/* ...hardware SPI, using SCK/MOSI/MISO hardware SPI pins and then user selected CS/IRQ/RST */
Adafruit_BluefruitLE_SPI ble(BLUEFRUIT_SPI_CS, BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);

Make sure that the second line is uncommented (it should be)

Uploading to the Feather Bluefruit LE

It's pretty easy to upload, first up make sure you have Adafruit Feather 32u4 selected on the boards dropdown as
above. Also, in the Ports menu, look for the port labeled as such:

Now click the upload button on the Arduino IDE (or File Menu -> Upload)

OK now you can upload to the Bluefruit Feather!�
If you're using Ubuntu 15.04 or other Linux distributions and run into errors attempting to upload a program to
the board, scroll up to the Ubuntu and Linux issue fix in the previous section�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 41 of 211

If all is good you will see Done Uploading in the status bar

Uploading to a brand new board/Upload failures

If you are uploading for the first time to a new board, or if upload fails, pres the RESET mini button on the Feather 32u4
Bluefruit when you see the Yellow Arrow lit and the Uploading... text in the status bar. When you see the red LED
pulsing on and off, you know the bootloader is running.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 42 of 211

Don't click the reset button before uploading, unlike other bootloaders you want this one to run at the time Arduino is
trying to upload

Run the sketch

OK check again that the correct port is selected

Then open up the Serial console. You will see the following:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 43 of 211

This sketch starts by doing a factory reset, then querying the BLE radio for details. These details will be useful if you are
debugging the radio. If you see the information as above, you're working! (Note that the dates and version numbers
may vary)

AT command testing

Now you can try out some AT commands - check the rest of the learn guide for a full list. We'll just start with
AT+HWGETDIETEMP which will return the approximate ambient temperature of the BLE chipset

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 44 of 211

OK now you know how to upload/test/communicate with your Feather 32u4 Bluefruit. Next up we have a bunch of
tutorials who can follow for checking out the bluetooth le radio and apps.

For all the following examples, we share the same code between various modules so don't forget to make sure you

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 45 of 211

have the RESET pin set to 4 in BluefruitConfig.h for each sketch before uploading, and that Hardware SPI mode is
selected by checking for

 /* ...hardware SPI, using SCK/MOSI/MISO hardware SPI pins and then user selected CS/IRQ/RST */
Adafruit_BluefruitLE_SPI ble(BLUEFRUIT_SPI_CS, BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 46 of 211

Configuration!

Which board do you have?

There's a few products under the Bluefruit name:

If you are using the Bluefruit LE Shield then you have an

SPI-connected NRF51822 module. You can use this with

Atmega328 (Arduino UNO or compatible), ATmega32u4

(Arduino Leonardo, compatible) or ATSAMD21 (Arduino

Zero, compatible) and possibly others.

Your pinouts are Hardware SPI, CS = 8, IRQ = 7, RST = 4

Bluefruit Micro or Feather 32u4 Bluefruit
If you have a Bluefruit Micro or Feather 32u4 Bluefruit LE

then you have an ATmega32u4 chip with Hardware SPI,

CS = 8, IRQ = 7, RST = 4

Before you start uploading any of the example sketches, you'll need to CONFIGURE the Bluefruit interface -
there's a lot of options so pay close attention!�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 47 of 211

https://learn.adafruit.com/assets/29590
https://learn.adafruit.com/assets/29592

Feather M0 Bluefruit LE
If you have a Feather M0 Bluefruit LE then you have an

ATSAMD21 chip with Hardware SPI, CS = 8, IRQ = 7,

RST = 4

Bluefruit LE SPI Friend
If you have a stand-alone module, you have a bit of

flexibility with wiring however we strongly recommend

Hardware SPI, CS = 8, IRQ = 7, RST = 4

You can use this with just about any microcontroller with

5 or 6 pins

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 48 of 211

https://learn.adafruit.com/assets/29698
https://learn.adafruit.com/assets/29594

Bluefruit LE UART Friend or Flora BLE
If you have a stand-alone UART module you have some

flexibility with wiring. However we suggest hardware

UART if possible. You will likely need to use the flow

control CTS pin if you are not using hardware UART.

There's also a MODE pin

You can use this with just about any microcontroller with

at least 3 pins, but best used with a Hardware

Serial/UART capable chip!

Configure the Pins Used

You'll want to check the Bluefruit Config to set up the pins you'll be using for UART or SPI

Each example sketch has a secondary tab with configuration details. You'll want to edit and save the sketch to your
own documents folder once set up.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 49 of 211

https://learn.adafruit.com/assets/29595
https://learn.adafruit.com/assets/29596

Common settings:

You can set up how much RAM to set aside for a communication buffer and whether you want to have full debug
output. Debug output is 'noisy' on the serial console but is handy since you can see all communication between the
micro and the BLE

// --
// These settings are used in both SW UART, HW UART and SPI mode
// --
#define BUFSIZE 128 // Size of the read buffer for incoming data
#define VERBOSE_MODE true // If set to 'true' enables debug output

Software UART

If you are using Software UART, you can set up which pins are going to be used for RX, TX, and CTS flow control. Some
microcontrollers are limited on which pins can be used! Check the SoftwareSerial library documentation for more
details

// SOFTWARE UART SETTINGS
#define BLUEFRUIT_SWUART_RXD_PIN 9 // Required for software serial!
#define BLUEFRUIT_SWUART_TXD_PIN 10 // Required for software serial!
#define BLUEFRUIT_UART_CTS_PIN 11 // Required for software serial!
#define BLUEFRUIT_UART_RTS_PIN -1 // Optional, set to -1 if unused

Hardware UART

If you have Hardware Serial, there's a 'name' for it, usually Serial1 - you can set that up here:

// HARDWARE UART SETTINGS
#ifdef Serial1 // this makes it not complain on compilation if there's no Serial1
 #define BLUEFRUIT_HWSERIAL_NAME Serial1
#endif

Mode Pin

For both hardware and software serial, you will likely want to define the MODE pin. There's a few sketches that dont
use it, instead depending on commands to set/unset the mode. Its best to use the MODE pin if you have a GPIO to
spare!

#define BLUEFRUIT_UART_MODE_PIN 12 // Set to -1 if unused

SPI Pins

For both Hardware and Software SPI, you'll want to set the CS (chip select) line, IRQ (interrupt request) line and if you
have a pin to spare, RST (Reset)

// SHARED SPI SETTINGS
#define BLUEFRUIT_SPI_CS 8
#define BLUEFRUIT_SPI_IRQ 7
#define BLUEFRUIT_SPI_RST 4 // Optional but recommended, set to -1 if unused

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 50 of 211

Software SPI Pins

If you don't have a hardware SPI port available, you can use any three pins...its a tad slower but very flexible

// SOFTWARE SPI SETTINGS
#define BLUEFRUIT_SPI_SCK 13
#define BLUEFRUIT_SPI_MISO 12
#define BLUEFRUIT_SPI_MOSI 11

Select the Serial Bus

Once you've configured your pin setup in the BluefruitConfig.h file, you can now check and adapt the example sketch.

The Adafruit_BluefruitLE_nRF51 library supports four different serial bus options, depending on the HW you are using:
SPI both hardware and software type, and UART both hardware and software type.

UART Based Boards (Bluefruit LE UART Friend & Flora BLE)

This is for Bluefruit LE UART Friend & Flora BLE boards. You can use either software serial or hardware serial. Hardware
serial is higher quality, and less risky with respect to losing data. However, you may not have hardware serial available!
Software serial does work just fine with flow-control and we do have that available at the cost of a single GPIO pin.

For software serial (Arduino Uno, Adafruit Metro) you should uncomment the software serial contructor below, and
make sure the other three options (hardware serial & SPI) are commented out.

// Create the bluefruit object, either software serial...uncomment these lines
SoftwareSerial bluefruitSS = SoftwareSerial(BLUEFRUIT_SWUART_TXD_PIN, BLUEFRUIT_SWUART_RXD_PIN);

Adafruit_BluefruitLE_UART ble(bluefruitSS, BLUEFRUIT_UART_MODE_PIN,
 BLUEFRUIT_UART_CTS_PIN, BLUEFRUIT_UART_RTS_PIN);

For boards that require hardware serial (Adafruit Flora, etc.), uncomment the hardware serial constructor, and make
sure the other three options are commented out

/* ...or hardware serial, which does not need the RTS/CTS pins. Uncomment this line */
Adafruit_BluefruitLE_UART ble(BLUEFRUIT_HWSERIAL_NAME, BLUEFRUIT_UART_MODE_PIN);

SPI Based Boards (Bluefruit LE SPI Friend)

For SPI based boards, you should uncomment the hardware SPI constructor below, making sure the other constructors
are commented out:

/* ...hardware SPI, using SCK/MOSI/MISO hardware SPI pins and then user selected CS/IRQ/RST */
Adafruit_BluefruitLE_SPI ble(BLUEFRUIT_SPI_CS, BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);

If for some reason you can't use HW SPI, you can switch to software mode to bit-bang the SPI transfers via the following

Refer to the table above to determine whether you have SPI or UART controlled Bluefruits!�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 51 of 211

constructor:

/* ...software SPI, using SCK/MOSI/MISO user-defined SPI pins and then user selected CS/IRQ/RST */
Adafruit_BluefruitLE_SPI ble(BLUEFRUIT_SPI_SCK, BLUEFRUIT_SPI_MISO,
 BLUEFRUIT_SPI_MOSI, BLUEFRUIT_SPI_CS,
 BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 52 of 211

BLEUart

The BLEUart example sketch allows you to send and receive text data between the Arduino and a connected
Bluetooth Low Energy Central device on the other end (such as you mobile phone using the Adafruit Bluefruit LE
Connect application for Android (https://adafru.it/f4G) or iOS (https://adafru.it/f4H) in UART mode).

Opening the Sketch

To open the ATCommand sketch, click on the File > Examples > Adafruit_BluefruitLE_nRF51 folder in the Arduino IDE
and select bleuart_cmdmode:

This will open up a new instance of the example in the IDE, as shown below:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 53 of 211

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8

Configuration

Check the Configuration! page earlier to set up the sketch for Software/Hardware UART or Software/Hardware SPI.
The default is hardware SPI

If using software or hardware Serial UART:

This tutorial does not need to use the MODE pin, make sure you have the mode switch in CMD mode if you do
not configure & connect a MODE pin
Don't forget to also connect the CTS pin on the Bluefruit to ground if you are not using it! (The Flora has this
already done)

Running the Sketch

Once you upload the sketch to your board (via the arrow-shaped upload icon), and the upload process has finished,
open up the Serial Monitor via Tools > Serial Monitor, and make sure that the baud rate in the lower right-hand corner
is set to 115200:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 54 of 211

Once you see the request, use the App to connect to the Bluefruit LE module in UART mode so you get the text box on
your phone

Any text that you type in the box at the top of the Serial Monitor will be sent to the connected phone, and any data
sent from the phone will be displayed in the serial monitor:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 55 of 211

You can see the incoming string here in the Adafruit Bluefruit LE Connect app below (iOS in this case):

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 56 of 211

The response text ('Why hello, Arduino!') can be seen below:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 57 of 211

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 58 of 211

HIDKeyboard

The HIDKeyboard example shows you how you can use the built-in HID keyboard AT commands to send keyboard
data to any BLE-enabled Android or iOS phone, or other device that supports BLE HID peripherals.

Opening the Sketch

To open the ATCommand sketch, click on the File > Examples > Adafruit_BluefruitLE_nRF51 folder in the Arduino IDE
and select hidkeyboard:

This will open up a new instance of the example in the IDE, as shown below:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 59 of 211

Configuration

Check the Configuration! page earlier to set up the sketch for Software/Hardware UART or Software/Hardware SPI.
The default is hardware SPI

If using software or hardware Serial UART:

This tutorial does not need to use the MODE pin, make sure you have the mode switch in CMD mode!
Don't forget to also connect the CTS pin on the Bluefruit to ground if you are not using it! (The Flora has this
already done)

Running the Sketch

Once you upload the sketch to your board (via the arrow-shaped upload icon), and the upload process has finished,
open up the Serial Monitor via Tools > Serial Monitor, and make sure that the baud rate in the lower right-hand corner
is set to 115200:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 60 of 211

To send keyboard data, type anything into the textbox at the top of the Serial Monitor and click the Send button.

Bonding the HID Keyboard

Before you can use the HID keyboard, you will need to 'bond' it to your phone or PC. The bonding process establishes
a permanent connection between the two devices, meaning that as soon as your phone or PC sees the Bluefruit LE
module again it will automatically connect.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 61 of 211

The exact procedures for bonding the keyboard will varying from one platform to another.

Android

To bond the keyboard on a Bluetooth Low Energy enabled Android device, go to the Settings application and click
the Bluetooth icon.

Inside the Bluetooth setting panel you should see the Bluefruit LE module advertising itself as Bluefruit Keyboard
under the 'Available devices' list:

Tapping the device will start the bonding process, which should end with the Bluefruit Keyboard device being moved
to a new 'Paired devices' list with 'Connected' written underneath the device name:

When you no longer need a bond, or wish to bond the Bluefruit LE module to another device, be sure to
delete the bonding information on the phone or PC, otherwise you may not be able to connect on a new
device!

�

These screenshots are based on Android 5.0 running on a Nexus 7 2013. The exact appearance may vary
depending on your device and OS version.�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 62 of 211

To delete the bonding information, click the gear icon to the right of the device name and the click the Forget button:

iOS

To bond the keyboard on an iOS device, go to the Settings application on your phone, and click the Bluetooth menu
item.

The keyboard should appear under the OTHER DEVICES list:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 63 of 211

Once the bonding process is complete the device will be moved to the MY DEVICES category, and you can start to
use the Bluefruit LE module as a keyboard:

To unbond the device, click the 'info' icon and then select the Forget this Device option in the menu:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 64 of 211

OS X

To bond the keyboard on an OS X device, go to the Bluetooth Preferences window and click the Pair button beside
the Bluefruit Keyboard device generated by this example sketch:

To unbond the device once it has been paired, click the small 'x' icon beside Bluefruit Keyboard:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 65 of 211

... and then click the Remove button when the confirmation dialogue box pops up:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 66 of 211

Controller

The Controller sketch allows you to turn your BLE-enabled iOS or Android device in a hand-held controller or an
external data source, taking advantage of the wealth of sensors on your phone or tablet.

You can take accelerometer or quaternion data from your phone, and push it out to your Arduino via BLE, or get the
latest GPS co-ordinates for your device without having to purchase (or power!) any external HW.

Opening the Sketch

To open the Controller sketch, click on the File > Examples > Adafruit_BluefruitLE_nRF51 folder in the Arduino IDE and
select controller:

This will open up a new instance of the example in the IDE, as shown below:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 67 of 211

Configuration

Check the Configuration! page earlier to set up the sketch for Software/Hardware UART or Software/Hardware SPI.
The default is hardware SPI

If using software or hardware Serial UART:

This tutorial will also be easier to use if you wire up the MODE pin, you can use any pin but our tutorial has pin 12
by default. You can change this to any pin. If you do not set the MODE pin then make sure you have the mode
switch in CMD mode
If you are using a Flora or otherwise don't want to wire up the Mode pin, set the BLUEFRUIT_UART_MODE_PIN
to -1 in the configuration tab so that the sketch will use the +++ method to switch between Command and Data
mode!
Don't forget to also connect the CTS pin on the Bluefruit to ground if you are not using it! (The Flora has this
already done)

Running the Sketch

Once you upload the sketch to your board (via the arrow-shaped upload icon), and the upload process has finished,
open up the Serial Monitor via Tools > Serial Monitor, and make sure that the baud rate in the lower right-hand corner
is set to 115200:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 68 of 211

Using Bluefruit LE Connect in Controller Mode

Once the sketch is running you can open Adafruit's Bluefruit LE Connect application (available for
Android (https://adafru.it/f4G) or iOS (https://adafru.it/f4H)) and use the Controller application to interact with the sketch.
 (If you're new to Bluefruit LE Connect, have a look at our dedicated Bluefruit LE Connect learning
guide (https://adafru.it/iCm).)

On the welcome screen, select the Adafruit Bluefruit LE device from the list of BLE devices in range:

Then from the activity list select Controller:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 69 of 211

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
file:///bluefruit-le-connect-for-ios/settings

This will bring up a list of data points you can send from your phone or tablet to your Bluefruit LE module, by enabling
or disabling the appropriate sensor(s).

Streaming Sensor Data

You can take Quaternion (absolute orientation), Accelerometer, Gyroscope, Magnetometer or GPS Location data from
your phone and send it directly to your Arduino from the Controller activity.

By enabling the Accelerometer field, for example, you should see accelerometer data update in the app:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 70 of 211

The data is parsed in the example sketch and output to the Serial Monitor as follows:

Accel 0.20 -0.51 -0.76
Accel 0.22 -0.50 -0.83
Accel 0.25 -0.51 -0.83
Accel 0.21 -0.47 -0.76
Accel 0.27 -0.48 -0.82

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 71 of 211

Note that even though we only print 2 decimal points, the values are received from the App as a full 4-byte floating
point.

Control Pad Module

You can also use the Control Pad Module to capture button presses and releases by selecting the appropriate menu
item:

This will bring up the Control Pad panel, shown below:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 72 of 211

Button presses and releases will all be logged to the Serial Monitor with the ID of the button used:

Button 8 pressed
Button 8 released
Button 3 pressed
Button 3 released

Color Picker Module

You can also send RGB color data via the Color Picker module, which presents the following color selection dialogue:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 73 of 211

This will give you Hexadecimal color data in the following format:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 74 of 211

RGB #A42FFF

You can combine the color picker and controller sample sketches to make color-configurable animations triggered by
buttons in the mobile app-- very handy for wearables! Download this combined sample code (configured for Feather
but easy to adapt to FLORA, BLE Micro, etc.) to get started:

https://adafru.it/kzF

https://adafru.it/kzF

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 75 of 211

https://learn.adafruit.com/system/assets/assets/000/029/260/original/feather_bluefruit_neopixel_animation_controller.zip?1450791688

HeartRateMonitor

The HeartRateMonitor example allows you to define a new GATT Service and associated GATT Characteristics, and
update the characteristic values using standard AT commands.

Opening the Sketch

To open the ATCommand sketch, click on the File > Examples > Adafruit_BluefruitLE_nRF51 folder in the Arduino IDE
and select heartratemonitor:

This will open up a new instance of the example in the IDE, as shown below:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 76 of 211

Configuration

Check the Configuration! page earlier to set up the sketch for Software/Hardware UART or Software/Hardware SPI.
The default is hardware SPI

If Using Hardware or Software UART

This tutorial does not need to use the MODE pin, make sure you have the mode switch in CMD mode if you do not
configure & connect a MODE pin

This demo uses some long data transfer strings, so we recommend defining and connecting both CTS and RTS to pins,
even if you are using hardware serial.

If you are using a Flora or just dont want to connect CTS or RTS, set the pin #define's to -1 and Don't forget to also
connect the CTS pin on the Bluefruit to ground! (The Flora has this already done)

If you are using RTS and CTS, you can remove this line below, which will slow down the data transmission

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 77 of 211

// this line is particularly required for Flora, but is a good idea
 // anyways for the super long lines ahead!
 ble.setInterCharWriteDelay(5); // 5 ms

Running the Sketch

Once you upload the sketch to your board (via the arrow-shaped upload icon), and the upload process has finished,
open up the Serial Monitor via Tools > Serial Monitor, and make sure that the baud rate in the lower right-hand corner
is set to 115200:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 78 of 211

If you open up an application on your mobile device or laptop that support the standard Heart Rate Monitor
Service (https://adafru.it/f4I), you should be able to see the heart rate being updated in sync with the changes seen in
the Serial Monitor:

nRF Toolbox HRM Example

The image below is a screenshot from the free nRF Toolbox (https://adafru.it/e9M) application from Nordic on Android
(also available on iOS (https://adafru.it/f4J)), showing the incoming Heart Rate Monitor data:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 79 of 211

https://developer.bluetooth.org/TechnologyOverview/Pages/HRS.aspx
https://play.google.com/store/apps/details?id=no.nordicsemi.android.nrftoolbox&hl=en
https://itunes.apple.com/app/nrf-toolbox/id820906058?mt=8

CoreBluetooth HRM Example

The image below is from a freely available CoreBluetooth sample application (https://adafru.it/f4K) from Apple showing
how to work with Bluetooth Low Energy services and characteristics:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 80 of 211

https://developer.apple.com/library/mac/samplecode/HeartRateMonitor/Introduction/Intro.html

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 81 of 211

UriBeacon

The UriBeacon example shows you how to use the built-in UriBeacon AT commands to configure the Bluefruit LE
module as a UriBeacon advertiser, following Google's Physical Web UriBeacon (https://adafru.it/edk) specification.

Opening the Sketch

To open the ATCommand sketch, click on the File > Examples > Adafruit_BluefruitLE_nRF51 folder in the Arduino IDE
and select uribeacon:

This will open up a new instance of the example in the IDE, as shown below. You can edit the URL that the beacon will
point to, from the default http://www.adafruit.com or just upload as is to test

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 82 of 211

https://github.com/google/uribeacon

Configuration

Check the Configuration! page earlier to set up the sketch for Software/Hardware UART or Software/Hardware SPI.
The default is hardware SPI

If using software or hardware Serial UART:

This tutorial does not need to use the MODE pin, make sure you have the mode switch in CMD mode if you do
not configure & connect a MODE pin
Don't forget to also connect the CTS pin on the Bluefruit to ground if you are not using it! (The Flora has this
already done)

Running the Sketch

Once you upload the sketch to your board (via the arrow-shaped upload icon), and the upload process has finished,
open up the Serial Monitor via Tools > Serial Monitor, and make sure that the baud rate in the lower right-hand corner
is set to 115200:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 83 of 211

At this point you can open the Physical Web Application for Android (https://adafru.it/edi) or for
iOS (https://adafru.it/edj), and you should see a link advertising Adafruit's website:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 84 of 211

https://play.google.com/store/apps/details?id=physical_web.org.physicalweb
https://itunes.apple.com/us/app/physical-web/id927653608?mt=8

�

HALP!

When using the Bluefruit Micro or a Bluefruit LE with Flora/Due/Leonardo/Micro the examples dont
run?

We add a special line to setup() to make it so the Arduino will halt until it sees you've connected over the Serial
console. This makes debugging great but makes it so you cannot run the program disconnected from a computer.

Solution? Once you are done debugging, remove these two lines from setup()

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 85 of 211

�

 while (!Serial);
 delay(500);

I can't seem to "Find" the Bluefruit LE!

Getting something like this?

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 86 of 211

For UART/Serial Bluefruits:

Check you have the MODE switch in CMD and the MODE pin not wired to anything if it isnt used!
If you are trying to control the MODE from your micro, make sure you set the MODE pin in the sketch
Make sure you have RXI and TXO wired right! They are often swapped by accident
Make sure CTS is tied to GND if you are using hardware serial and not using CTS
Check the MODE red LED, is it blinking? If its blinking continuously, you might be in DFU mode, power cycle the
module!
If you are using Hardware Serial/Software Serial make sure you know which one and have that set up

If using SPI Bluefruit:

Make sure you have all 5 (or 6) wires connected properly.
If using hardware SPI, you need to make sure you're connected to the hardware SPI port, which differs
depending on the main chipset.

If using Bluefruit Micro:

Make sure you change the RESET pin to #4 in any Config file. Also be sure you are using hardware SPI to
connect!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 87 of 211

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 88 of 211

AT
Commands

The Bluefruit LE modules use a Hayes AT-style command set (https://adafru.it/ebJ)to configure the device.

The advantage of an AT style command set is that it's easy to use in machine to machine communication, while still
being somewhat user friendly for humans.

Test Command Mode '=?'

'Test' mode is used to check whether or not the specified command exists on the system or not.

Certain firmware versions or configurations may or may not include a specific command, and you can determine if the
command is present by taking the command name and appending '=?' to it, as shown below

AT+BLESTARTADV=?

If the command is present, the device will reply with 'OK'. If the command is not present, the device will reply
with 'ERROR'.

AT+BLESTARTADV=?
OK\r\n
AT+MISSINGCMD=?
ERROR\r\n

Write Command Mode '=xxx'

'Write' mode is used to assign specific value(s) to the command, such as changing the radio's transmit power level
using the command we used above.

To write a value to the command, simple append an '=' sign to the command followed by any paramater(s) you wish to
write (other than a lone '?' character which will be interpretted as tet mode):

AT+BLEPOWERLEVEL=-8

If the write was successful, you will generally get an 'OK' response on a new line, as shown below:

AT+BLEPOWERLEVEL=-8
OK\r\n

If there was a problem with the command (such as an invalid parameter) you will get an 'ERROR' response on a new
line, as shown below:

AT+BLEPOWERLEVEL=3
ERROR\r\n

Note: This particular error was generated because '3' is not a valid value for the AT+BLEPOWERLEVEL command.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 89 of 211

http://en.wikipedia.org/wiki/Hayes_command_set

 Entering '-4', '0' or '4' would succeed since these are all valid values for this command.

Execute Mode

'Execute' mode will cause the specific command to 'run', if possible, and will be used when the command name is
entered with no additional parameters.

AT+FACTORYRESET

You might use execute mode to perform a factory reset, for example, by executing the AT+FACTORYRESET command
as follows:

AT+FACTORYRESET
OK\r\n

NOTE: Many commands that are means to be read will perform the same action whether they are sent to the command
parser in 'execute' or 'read' mode. For example, the following commands will produce identical results:

AT+BLEGETPOWERLEVEL
-4\r\n
OK\r\n
AT+BLEGETPOWERLEVEL?
-4\r\n
OK\r\n

If the command doesn't support execute mode, the response will normally be 'ERROR' on a new line.

Read Command Mode '?'

'Read' mode is used to read the current value of a command.

Not every command supports read mode, but you generally use this to retrieve information like the current transmit
power level for the radio by appending a '?' to the command, as shown below:

AT+BLEPOWERLEVEL?

If the command doesn't support read mode or if there was a problem with the request, you will normally get
an 'ERROR' response.

If the command read was successful, you will normally get the read results followed by 'OK' on a new line, as shown
below:

AT+BLEPOWERLEVEL?
-4\r\n
OK\r\n

Note: For simple commands, 'Read' mode and 'Execute' mode behave identically.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 90 of 211

Standard
AT

The following standard Hayes/AT commands are available on Bluefruit LE modules:

AT

Acts as a ping to check if we are in command mode. If we are in command mode, we should receive the 'OK' response.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT
OK

ATI

Displays basic information about the Bluefruit module.

Codebase Revision: 0.3.0

Parameters: None

Output: Displays the following values:

Board Name
Microcontroller/Radio SoC Name
Unique Serial Number
Core Bluefruit Codebase Revision
Project Firmware Revision
Firmware Build Date
Softdevice, Softdevice Version, Bootloader Version (0.5.0+)

ATI
BLEFRIEND
nRF51822 QFAAG00
FB462DF92A2C8656
0.5.0
0.5.0
Feb 24 2015
S110 7.1.0, 0.0
OK

Updates:

Version 0.4.7+ of the firmware adds the chip revision after the chip name if it can be detected (ex. 'nRF51822
QFAAG00').
Version 0.5.0+ of the firmware adds a new 7th record containing the softdevice, softdevice version and

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 91 of 211

bootloader version (ex. 'S110 7.1.0, 0.0').

ATZ

Performs a system reset.

Codebase Revision: 0.3.0

Parameters: None

Output: None

ATZ
OK

ATE

Enables or disables echo of input characters with the AT parser

Codebase Revision: 0.3.0

Parameters: '1' = enable echo, '0' = disable echo

Output: None

Disable echo support
ATE=0
OK
#Enable echo support
ATE=1
OK

+++

Dynamically switches between DATA and COMMAND mode without changing the physical CMD/UART select switch.

When you are in COMMAND mode, entering '+++\n' or '+++\r\n' will cause the module to switch to DATA mode, and
anything typed into the console will go direct to the BLUE UART service.

To switch from DATA mode back to COMMAND mode, simply enter '+++\n' or '+++\r\n' again (be sure to include the
new line character!), and a new 'OK' response will be displayed letting you know that you are back in COMMAND
mode (see the two 'OK' entries in the sample code below).

Codebase Revision: 0.4.7

Parameters: None

Output: None

Note that +++ can also be used on the mobile device to send and receive AT command on iOS or Android,
though this should always be used with care.�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 92 of 211

ATI
BLEFRIEND
nRF51822 QFAAG00
B122AAC33F3D2296
0.4.6
0.4.6
Dec 22 2014
OK
+++
OK
OK

See the AT+MODESWITCHEN command to control the availability of the +++ command�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 93 of 211

General
Purpose

The following general purpose commands are available on all Bluefruit LE modules:

AT+FACTORYRESET

Clears any user config data from non-volatile memory and performs a factory reset before resetting the Bluefruit
module.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT+FACTORYRESET
OK

AT+DFU

Forces the module into DFU mode, allowing over the air firmware updates using a dedicated DFU app on iOS or
Android.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT+DFU
OK

AT+HELP

Displays a comma-separated list of all AT parser commands available on the system.

Codebase Version: 0.3.0

Parameters: None

As of version 0.5.0+ of the firmware, you can perform a factory reset by holding the DFU button down for 10s
until the blue CONNECTED LED lights up, and then releasing the button.�

The AT parser will no longer responsd after the AT+DFU command is entered, since normal program
execution effectively halts and a full system reset is performed to start the bootloader code�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 94 of 211

Output: A comma-separated list of all AT parser commands available on the system.

AT+HELP
AT+FACTORYRESET,AT+DFU,ATZ,ATI,ATE,AT+DBGMEMRD,AT+DBGNVMRD,AT+HWLEDPOLARITY,AT+HWLED,AT+HWGETDIETEMP,AT
+HWMODEPINPOLARITY,AT+HWMODEPIN,AT+HWGPIOMODE,AT+HWGPIO,AT+HWI2CSCAN,AT+HWADC,AT+HWVBAT,AT+HWPWM,AT+HWP
WRDN,AT+BLEPOWERLEVEL,AT+BLEGETADDRTYPE,AT+BLEGETADDR,AT+BLEBEACON,AT+BLEGETRSSI,AT+GAPGETCONN,AT+GAPDI
SCONNECT,AT+GAPDEVNAME,AT+GAPDELBONDS,AT+GAPINTERVALS,AT+GAPSTARTADV,AT+GAPSTOPADV,AT+GAPAUTOADV,AT+GAP
SETADVDATA,AT+BLEUARTTX,AT+BLEUARTRX,AT+GATTADDSERVICE,AT+GATTADDCHAR,AT+GATTCHAR,AT+GATTLIST,AT+GATTCL
EAR,AT+HELP
OK

AT+NVMWRITE

Writes data to the 256 byte user non-volatile memory (NVM) region.

Codebase Version: 0.7.0

Parameters:

offset: The numeric offset for the first byte from the starting position in the user NVM
datatype: Which can be one of STRING (1), BYTEARRAY (2) or INTEGER (3)
data: The data to write to NVM memory (the exact payload format will change based on the specified datatype).

Output: Nothing

Write 32768 as an integer starting at byte 16 in user NVM
AT+NVMWRITE=16,INTEGER,32768
OK

AT+NVMREAD

Reads data from the 256 byte user non-volatile memory (NVM) region.

Codebase Version: 0.7.0

Parameters:

offset: The numeric offset for the first byte from the starting position in the user NVM
size: The number of bytes to read
datatype: The type used for the data being read, which is required to properly parse the data and display it as a
response. The value can be one of STRING (1), BYTEARRAY (2) or INTEGER (3)

Output: The data read back, formatted based on the datatype argument.

The sample code below may not match future firmware releases and is provided for illustration purposes only�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 95 of 211

Read an integer back from position 16 in user NVM
AT+NVMREAD=16, 4, INTEGER
32768
OK

AT+MODESWITCHEN

Enables or disables mode switches via the '+++' command on the BLE peripheral of BLE UART side of the connection.

Codebase Version: 0.7.1

Parameters:

location: This can be a string, either 'local' or 'ble' indicating which side should have the '+++' command enabled
or disabled, 'local' being the Bluefruit peripheral and 'ble' being the phone or tablet.
state: '0' to disable '+++' mode switches, '1' to enable them.

Output: None

Disable reomte '+++' mode switches
AT+MODESWITCHEN=ble,0
OK

By default, '+++' is enabled locally, and disabled in BLE�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 96 of 211

Hardware

The following commands allow you to interact with the low level HW on the Bluefruit LE module, such as reading or
toggling the GPIO pins, performing an ADC conversion ,etc.:

AT+BAUDRATE

Changes the baud rate used by the HW UART peripheral on the nRF51822. Note that we do not recommend using
higher baudrates than 9600 because the nRF51 UART can drop characters!

Codebase Revision: 0.7.0

Parameters: Baud rate, which must be one of the following values:

1200
2400
4800
9600
14400
19200
28800
38400
57600
76800
115200
230400
250000
460800
921600
1000000

Output: The current baud rate

Set the baud rate to 115200
AT+BAUDRATE=115200
OK

Check the current baud rate
AT+BAUDRATE
115200
OK

AT+HWADC

Performs an ADC conversion on the specified ADC pin

Codebase Revision: 0.3.0

Parameters: The ADC channel (0..7)

Output: The results of the ADC conversion

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 97 of 211

AT+HWADC=0
178
OK

AT+HWGETDIETEMP

Gets the temperature in degree celcius of the BLE module's die. This can be used for debug purposes (higher die
temperature generally means higher current consumption), but does not corresponds to ambient temperature and can
nto be used as a replacement for a normal temperature sensor.

Codebase Revision: 0.3.0

Parameters: None

Output: The die temperature in degrees celcius

AT+HWGETDIETEMP
32.25
OK

AT+HWGPIO

Gets or sets the value of the specified GPIO pin (depending on the pin's mode).

Codebase Revision: 0.3.0

Parameters: The parameters for this command change depending on the pin mode.

OUTPUT MODE: The following comma-separated parameters can be used when updating a pin that is set as an
output:

Pin numbers
Pin state, where:

0 = clear the pin (logic low/GND)
1 = set the pin (logic high/VCC)

INPUT MODE: To read the current state of an input pin or a pin that has been configured as an output, enter the pin
number as a single parameter.

Output: The pin state if you are reading an input or checking the state of an input pin (meaning only 1 parameter is
supplied, the pin number), where:

0 means the pin is logic low/GND
1 means the pin is logic high/VCC

Trying to set the value of a pin that has not been configured as an output will produce an 'ERROR' response.�
Some pins are reserved for specific functions on Bluefruit modules and can not be used as GPIO. If you try to

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 98 of 211

Set pin 14 HIGH
AT+HWGPIO=14,1
OK

Set pin 14 LOW
AT+HWGPIO=14,0
OK

Read the current state of pin 14
AT+HWGPIO=14
0
OK

Try to update a pin that is not set as an output
AT+HWGPIOMODE=14,0
OK
AT+HWGPIO=14,1
ERROR

AT+HWGPIOMODE

This will set the mode for the specified GPIO pin (input, output, etc.).

Codebase Revision: 0.3.0

Parameters: This command one or two values (comma-separated in the case of two parameters being used):

The pin number
The new GPIO mode, where:

0 = Input
1 = Output
2 = Input with pullup enabled
3 = Input with pulldown enabled

Output: If a single parameters is passed (the GPIO pin number) the current pin mode will be returned.

Configure pin 14 as an output
AT+HWGPIOMODE=14,0
OK

Get the current mode for pin 14
AT+HWPGIOMODE=14
0
OK

make use of a reserved pin number an 'ERROR' response will be generated.�

Some pins are reserved for specific functions on Bluefruit modules and can not be used as GPIO. If you try to
make use of a reserved pin number an 'ERROR' response will be generated.�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 99 of 211

AT+HWI2CSCAN

Scans the I2C bus to try to detect any connected I2C devices, and returns the address of devices that were found
during the scan process.

Codebase Revision: 0.3.0

Parameters: None

Output: A comma-separated list of any I2C address that were found while scanning the valid address range on the I2C
bus, or nothing is no devices were found.

I2C scan with two devices detected
AT+HWI2CSCAN
0x23,0x35
OK

I2C scan with no devices detected
AT+HWI2CSCAN
OK

AT+HWVBAT

Returns the main power supply voltage level in millivolts

Codebase Revision: 0.3.0

Parameters: None

Output: The VBAT level in millivolts

AT+HWVBAT
3248
OK

AT+HWRANDOM

Generates a random 32-bit number using the HW random number generator on the nRF51822 (based on white noise).

Codebase Revision: 0.4.7

Parameters: None

Output: A random 32-bit hexadecimal value (ex. '0x12345678')

AT+HWRANDOM
0x769ED823
OK

AT+HWMODELED

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 100 of 211

Allows you to override the default behaviour of the MODE led (which indicates the operating mode by default).

Codebase Revision: 0.6.6

Parameters: LED operating mode, which can be one of the following values:

disable or DISABLE or 0 - Disable the MODE LED entirely to save power
mode or MODE or 1 - Default behaviour, indicates the current operating mode
hwuart or HWUART or 2 - Toggles the LED on any activity on the HW UART bus (TX or RX)
bleuart or BLEUART or 3 - Toggles the LED on any activity on the BLE UART Service (TX or RX characteristic)
spi or SPI or 4 - Toggles the LED on any SPI activity
manual or MANUAL or 5 - Manually sets the state of the MODE LED via a second comma-separated parameter,
which can be on, off, or toggle.

Output: If run with no parameters, returns an upper-case string representing the current MODE LED operating mode
from the fields above

Get the curent MODE LED setting
AT+HWMODELED
MODE
OK

Change the MODE LED to indicate BLE UART activity
AT+HWMODELED=BLEUART
OK

Manually toggle the MODE LED
AT+HWMODELED=MANUAL,TOGGLE
OK

AT+UARTFLOW

Enables or disable hardware flow control (CTS + RTS) on the UART peripheral block of the nRF51822.

Codebase Revision: 0.7.0

Parameters: HW flow control state, which can be one of:

on
off
0
1

Output: If run with no parameters, returns a number representing whether flow control is enabled (1) or disabled (0).

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 101 of 211

Check the current flow control state
AT+UARTFLOW
1
OK

Disable HW flow control
AT+UARTFLOW=off
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 102 of 211

Beacon

Adafruit's Bluefruit LE modules currently support the following 'Beacon' technologies:

Beacon (Apple) via AT+BLEBEACON
UriBeacon (Google) via AT+BLEURIBEACON (deprecated)
Eddystone (Google) via AT+EDDYSTONE*

Modules can be configured to act as 'Beacons' using the following commands:

AT+BLEBEACON

Codebase Revision: 0.3.0

Parameters: The following comma-separated parameters are required to enable beacon mode:

Bluetooth Manufacturer ID (uint16_t)
128-bit UUID
Major Value (uint16_t)
Minor Value (uint16_t)
RSSI @ 1m (int8_t)

Output: None

Enable Apple iBeacon emulation
Manufacturer ID = 0x004C
AT+BLEBEACON=0x004C,01-12-23-34-45-56-67-78-89-9A-AB-BC-CD-DE-EF-F0,0x0000,0x0000,-59
OK
Reset to change the advertising data
ATZ
OK

Enable Nordic Beacon emulation
Manufacturer ID = 0x0059
AT+BLEBEACON=0x0059,01-12-23-34-45-56-67-78-89-9A-AB-BC-CD-DE-EF-F0,0x0000,0x0000,-59
OK
Reset to change the advertising data
ATZ
OK

Entering Nordic Beacon emulation using the sample code above, you can see the simulated beacon in Nordic's
'Beacon Config' tool below:

AT+BLEBEACON will cause the beacon data to be stored in non-volatile config memory on the Bluefruit LE
module, and these values will be persisted across system resets and power cycles. To remove or clear the
beacon data you need to enter the 'AT+FACTORYRESET' command in command mode.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 103 of 211

AT+BLEURIBEACON

Converts the specified URI into a UriBeacon (https://adafru.it/edk) advertising packet, and configures the module to
advertise as a UriBeacon (part of Google's Physical Web (https://adafru.it/ehZ) project).

To view the UriBeacon URIs you can use one of the following mobile applications:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 104 of 211

https://github.com/google/uribeacon
http://google.github.io/physical-web/

Android 4.3+: Physical Web (https://adafru.it/edi) on the Google Play Store
iOS: Physical Web (https://adafru.it/edj) in Apple's App Store

Codebase Revision: 0.4.7

Parameters: The URI to encode (ex. http://www.adafruit.com/blog (https://adafru.it/ei0))

Output: None of a valid URI was entered (length is acceptable, etc.).

AT+BLEURIBEACON=http://www.adafruit.com/blog
OK

Reset to change the advertising data
ATZ
OK

If the supplied URI is too long you will get the following output:

AT+BLEURIBEACON=http://www.adafruit.com/this/uri/is/too/long
URL is too long
ERROR

Deprecated: AT+EDDYSTONEENABLE

This command will enable Eddystone (https://adafru.it/fSA) support on the Bluefruit LE module. Eddystone support must
be enabled before the other related commands can be used.

Codebase Revision: 0.6.6

Parameters: 1 or 0 (1 = enable, 0 = disable)

Output: The current state of Eddystone support if no parameters are provided (1 = enabled, 0 = disabled)

If the URI that you are trying to encode is too long, try using a shortening service like bit.ly, and encode the
shortened URI.�

UriBeacon should be considered deprecated as a standard, and EddyStone should be used for any future
development. No further development will happen in the Bluefruit LE firmware around UriBeacon.�

This command was removed in firmware 0.7.0 to avoid confusion. Use AT+EDDYSTONESERVICEEN in 0.7.0
and higher.�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 105 of 211

https://play.google.com/store/apps/details?id=physical_web.org.physicalweb
https://itunes.apple.com/us/app/physical-web/id927653608?mt=8
http://www.adafruit.com/blog
https://github.com/google/eddystone

Enable Eddystone support
AT+EDDYSTONEENABLE=1
OK

Check the current Eddystone status on the module
AT+EDDYSTONEENABLE
1
OK

AT+EDDYSTONEURL

This command will set the URL for the Eddystone-URL (https://adafru.it/fSB) protocol.

Codebase Revision: 0.6.6

Parameters:

The URL to encode (mandatory)
An optional second parameter indicates whether to continue advertising the Eddystone URL even when the
peripheral is connected to a central device
Firmware 0.6.7 added an optional third parameter for the RSSI at 0 meters value. This should be measured by the
end user by checking the RSSI value on the receiving device at 1m and then adding 41 to that value (to
compensate for the signal strength loss over 1m), so an RSSI of -62 at 1m would mean that you should enter -21 as
the RSSI at 0m. Default value is -18dBm.

Output: Firmware <= 0.6.6: none. With firmware >= 0.6.7 running this command with no parameters will return the
current URL.

Set the Eddystone URL to adafruit
AT+EDDYSTONEURL=http://www.adafruit.com
OK

Set the Eddystone URL to adafruit and advertise it even when connected
AT+EDDYSTONEURL=http://www.adafruit.com,1
OK

AT+EDDYSTONECONFIGEN

This command causes the Bluefruit LE module to enable the Eddystone URL config service for the specified number of
seconds.

This command should be used in combination with the Physical Web application from Google, available for
Android (https://adafru.it/edi) or iOS (https://adafru.it/edj). Run this command then select the 'Edit URL' option from the
app to change the destination URL over the air.

Codebase Revision: 0.6.6

Parameters: The number of seconds to advertised the config service UUID

Output: None

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 106 of 211

https://github.com/google/eddystone/tree/master/eddystone-url
https://play.google.com/store/apps/details?id=physical_web.org.physicalweb
https://itunes.apple.com/us/app/physical-web/id927653608?mt=8

Start advertising the Eddystone config service for 5 minutes (300s)
AT+EDDYSTONECONFIGEN=300
OK

AT+EDDYSTONESERVICEEN

Adds or removes the Eddystone service from the GATT table (requires a reset to take effect).

Codebase Revision: 0.7.0

Parameters: Whether or not the Eddystone service should be enabled or not, using on of the following values:

on
off
1
0

Output: If the command is executed with no parameters it will disable a numeric value indicating whether the service is
enabled (1) or disabled (0).

Enable Eddystone service
AT+EddyStonServiceEn=on
OK

AT+EddyStonServiceEn=1
OK

Disable Eddystone service
AT+EddyStonServiceEn=off
OK

AT+EddyStonServiceEn=0
OK

AT+EDDYSTONEBROADCAST

This command can be used to start of stop advertising the Eddystone payload using the URL stored in non-volatile
memory (NVM).

Codebase Revision: 0.7.0

Parameters: Whether or not the payload should be broadcast, using one of the following values:

on
off
1
0

Output: If executed with no parameters, the current broadcast state will be displayed as a numeric value.

You must perform a system reset for this command to take effect.�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 107 of 211

Enable broadcasting current setting of EddyStone (stored previously on nvm)
AT+EddyStoneBroadcast=on
OK

AT+EddyStoneBroadcast=1
OK

Disable broadcasting current setting of EddyStone (still stored on nvm)
AT+EddyStoneBroadcast=off
OK

AT+EddyStoneBroadcast=0
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 108 of 211

BLE
Generic

The following general purpose BLE commands are available on Bluefruit LE modules:

AT+BLEPOWERLEVEL

Gets or sets the current transmit power level for the module's radio (higher transmit power equals better range, lower
transmit power equals better battery life).

Codebase Revision: 0.3.0

Parameters: The TX power level (in dBm), which can be one of the following values (from lowest to higher transmit
power):

-40
-20
-16
-12
-8
-4
0
4

Output: The current transmit power level (in dBm)

Get the current TX power level (in dBm)
AT+BLEPOWERLEVEL
0
OK

Set the TX power level to 4dBm (maximum value)
AT+BLEPOWERLEVEL=4
OK

Set the TX power level to -12dBm (better battery life)
AT+BLEPOWERLEVEL=-12
OK

Set the TX power level to an invalid value
AT+BLEPOWERLEVEL=-3
ERROR

AT+BLEGETADDRTYPE

Gets the address type (for the 48-bit BLE device address).

The updated power level will take affect as soon as the command is entered. If the device isn't connected to
another device, advertising will stop momentarily and then restart once the new power level has taken affect.�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 109 of 211

Normally this will be '1' (random), which means that the module uses a 48-bit address that was randomly generated
during the manufacturing process and written to the die by the manufacturer.

Random does not mean that the device address is randomly generated every time, only that a one-time random
number is used.

Codebase Revision: 0.3.0

Parameters: None

Output: The address type, which can be one of the following values:

0 = public
1 = random

AT+BLEGETADDRTYPE
1
OK

AT+BLEGETADDR

Gets the 48-bit BLE device address.

Codebase Revision: 0.3.0

Parameters: None

Output: The 48-bit BLE device address in the following format: 'AA:BB:CC:DD:EE:FF'

AT+BLEGETADDR
E4:C6:C7:31:95:11
OK

AT+BLEGETPEERADDR

Gets the 48-bit address of the peer (central) device we are connected to.

Codebase Revision: 0.6.5

Parameters: None

Output: The 48-bit address of the connected central device in hex format. The command will return ERROR if we are
not connected to a central device.

Please note that the address returned by the central device is almost always a random value that will change
over time, and this value should generally not be trusted. This command is provided for certain edge cases,
but is not useful in most day to day scenarios.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 110 of 211

AT+BLEGETPEERADDR
48:B2:26:E6:C1:1D
OK

AT+BLEGETRSSI

Gets the RSSI value (Received Signal Strength Indicator), which can be used to estimate the reliability of data
transmission between two devices (the lower the number the better).

Codebase Revision: 0.3.0

Parameters: None

Output: The RSSI level (in dBm) if we are connected to a device, otherwise '0'

Connected to an external device
AT+BLEGETRSSI
-46
OK

Not connected to an external device
AT+BLEGETRSSI
0
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 111 of 211

BLE Services

The following commands allow you to interact with various GATT services present on Bluefruit LE modules when
running in Command Mode.

AT+BLEUARTTX

This command will transmit the specified text message out via the UART Service (https://adafru.it/iCn) while you are
running in Command Mode.

Codebase Revision: 0.3.0

Parameters: The message payload to transmit. The payload can be up to 240 characters (since AT command strings
are limited to a maximum of 256 bytes total).

Output: This command will produce an ERROR message if you are not connected to a central device, or if the internal
TX FIFO on the Bluefruit LE module is full.

As of firmware release 0.6.2 and higher, AT+BLEUARTTX can accept a limited set of escape code sequences:

\r = carriage return
\n = new line
\t = tab
\b = backspace
\\ = backward slash

As of firmware release 0.6.7 and higher, AT+BLEUARTTX can accept the following escape code sequence since
AT+BLEUARTTX=? has a specific meaning to the AT parser:

\? = transmits a single question mark

As of firmware release 0.7.6 and higher, AT+BLEUARTTX can accept the following escape code sequence:

\+ = transmit a single '+' character without having to worry about `+++` mode switch combinations

Send a string when connected to another device
AT+BLEUARTTX=THIS IS A TEST
OK

Send a string when not connected
AT+BLEUARTTX=THIS IS A TEST
ERROR

ESCAPE SEQUENCE NOTE: If you are trying to send escape sequences in code via something like
'ble.print("...");' please note that you will need to send a double back-slash for the escape code to arrive as-
intended in the AT command. For example: ble.println("AT+BLEUARTTX=Some Test\\r\\n");

�

You must be connected to another device for this command to execute�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 112 of 211

file:///introducing-adafruit-ble-bluetooth-low-energy-friend/uart-service

TX FIFO Buffer Handling

Starting with firmware version 0.6.7, when the TX FIFO buffer is full a 200ms blocking delay will be used to see if any
free space becomes available in the FIFO before returning ERROR. The exact process is detailed in the flow chart
below:

You can use the AT+BLEUARTFIFO=TX (https://adafru.it/id3) command to check the size of the TX FIFO before sending
data to ensure that you have enough free space available in the buffer.

The TX FIFO has the following size, depending on the firmware version used:

Firmware <=0.6.6: 160 characters wide
Firmware >=0.6.7: 1024 characters wide

AT+BLEUARTTXF

This is a convenience function the serves the same purpose as AT+BLEUARTTX, but data is immediately sent in a

Note: The TX FIFO full check will happen for each GATT transaction (of up to 20 bytes of data each), so large
data transfers may have multiple 200ms wait states.�

It IS possible with large data transfers that part of the payload can be transmitted, and the command can still
produce an ERROR if the FIFO doesn't empty in time in the middle of the payload transfer (since data is
transmitted in maximum 20 byte chunks). If you need to ensure reliable data transfer, you should always
check the TX FIFO size before sending data, which you can do using the AT+BLEUARTFIFO command. If not
enough space is available for the entire payload, add a SW delay until enough space is available. Any single
AT+BLEUARTTX command can fit into the FIFO, but multiple large instances of this command may cause the
FIFO to fill up mid transfer.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 113 of 211

single BLE packet ('F' for force packet). This command will accept a maximum of 20 characters, which is the limit of
what can be send in a single packet.

Codebase Revision: 0.7.6

Parameters: See AT+BLEUARTTX

Output: See AT+BLEUARTTX

AT+BLEUARTRX

This command will dump the UART service (https://adafru.it/iCn)'s RX buffer to the display if any data has been received
from from the UART service while running in Command Mode. The data will be removed from the buffer once it is
displayed using this command.

Any characters left in the buffer when switching back to Data Mode will cause the buffered characters to be displayed
as soon as the mode switch is complete (within the limits of available buffer space, which is 1024 bytes on current black
32KB SRAM devices, or 160 bytes for the blue first generation BLEFriend board based on 16KB SRAM parts).

Codebase Revision: 0.3.0

Parameters: None

Output: The RX buffer's content if any data is available, otherwise nothing.

Command results when data is available
AT+BLEUARTRX
Sent from Android
OK

Command results when no data is available
AT+BLEUARTRX
OK

AT+BLEUARTFIFO

This command will return the free space available in the BLE UART TX and RX FIFOs. If you are transmitting large
chunks of data, you may want to check if you have enough free space in the TX FIFO before sending, keeping in mind
that individual GATT packets can contain up to 20 user bytes each.

Codebase Revision: 0.6.7

Parameters: Running this command with no parameters will return two comma-separated values indicating the free
space in the TX buffer, following by the RX buffer. To request a specific buffer, you can execute the command with
either a "TX" or "RX" value (For example: "AT+BLEUARTFIFO=TX").

Output: The free space remaining in the TX and RX FIFO buffer if no parameter is present, otherwise the free space
remaining in the specified FIFO buffer.

You can also use the AT+BLEUARTFIFO=RX command to check if any incoming data is available or not.�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 114 of 211

file:///introducing-adafruit-ble-bluetooth-low-energy-friend/uart-service

AT+BLEUARTFIFO
1024,1024
OK

AT+BLEUARTFIFO=TX
1024
OK

AT+BLEUARTFIFO=RX
1024
OK

AT+BLEKEYBOARDEN

This command will enable GATT over HID (GoH) keyboard support, which allows you to emulate a keyboard on
supported iOS and Android devices. By default HID keyboard support is disabled, so you need to set
BLEKEYBOARDEN to 1 and then perform a system reset before the keyboard will be enumerated and appear in the
Bluetooth preferences on your phone, where if can be bonded as a BLE keyboard.

Codebase Revision: 0.5.0

Parameters: 1 or 0 (1 = enable, 0 = disable)

Output: None

Enable BLE keyboard support then reset
AT+BLEKEYBOARDEN=1
OK
ATZ
OK

Disable BLE keyboard support then reset
AT+BLEKEYBOARDEN=0
OK
ATZ
OK

AT+BLEKEYBOARD

Sends text data over the BLE keyboard interface (if it has previously been enabled via AT+BLEKEYBOARDEN).

As of firmware version 0.6.6 this command is now an alias for AT+BLEHIDEN�
You must perform a system reset (ATZ) before the changes take effect!�
Before you can use your HID over GATT keyboard, you will need to bond your mobile device with the
Bluefruit LE module in the Bluetooth preferences panel.�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 115 of 211

Any valid alpha-numeric character can be sent, and the following escape sequences are also supported:

\r - Carriage Return
\n - Line Feed
\b - Backspace
\t - Tab
\\ - Backslash

As of version 0.6.7 you can also use the following escape code when sending a single character
('AT+BLEKEYBOARD=?' has another meaning for the AT parser):

\? - Question mark

Codebase Revision: 0.5.0

Parameters: The text string (optionally including escape characters) to transmit

Output: None

Send a URI with a new line ending to execute in Chrome, etc.
AT+BLEKEYBOARD=http://www.adafruit.com\r\n
OK

Send a single question mark (special use case, 0.6.7+)
AT+BLEKEYBOARD=\?
OK

AT+BLEKEYBOARDCODE

Sends a raw hex sequence of USB HID keycodes to the BLE keyboard interface including key modifiers and up to six
alpha-numeric characters.

This command accepts the following string-encoded byte array payload, matching the way HID over GATT sends
keyboard data:

Byte 0: Modifier
Byte 1: Reserved (should always be 00)
Bytes 2..7: Hexadecimal value(s) corresponding to the HID keys (if no character is used you can enter '00' or
leave trailing characters empty)

After a keycode sequence is sent with the AT+BLEKEYBOARDCODE command, you must send a second
AT+BLEKEYBOARDCODE command with at least two 00 characters to indicate the keys were released!

Modifier Values

The modifier byte can have one or more of the following bits set:

Bit 0 (0x01): Left Control
Bit 1 (0x02): Left Shift
Bit 2 (0x04): Left Alt
Bit 3 (0x08): Left Window
Bit 4 (0x10): Right Control

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 116 of 211

Bit 5 (0x20): Right Shift
Bit 6 (0x40): Right Alt
Bit 7 (0x80): Right Window

Codebase Revision: 0.5.0

Parameters: A set of hexadecimal values separated by a hyphen ('-'). Note that these are HID scan code values, not
standard ASCII values!

Output: None

HID Keyboard Codes

A list of hexademical-format HID keyboard codes can be found here (https://adafru.it/cQV) (see section 7), and are
listed below for convenience sake:

0x00 Reserved (no event indicated)
0x01 Keyboard ErrorRollOver
0x02 Keyboard POSTFail
0x03 Keyboard ErrorUndefined
0x04 Keyboard a and A
0x05 Keyboard b and B
0x06 Keyboard c and C
0x07 Keyboard d and D
0x08 Keyboard e and E
0x09 Keyboard f and F
0x0A Keyboard g and G
0x0B Keyboard h and H
0x0C Keyboard i and I
0x0D Keyboard j and J
0x0E Keyboard k and K
0x0F Keyboard l and L
0x10 Keyboard m and M
0x11 Keyboard n and N
0x12 Keyboard o and O
0x13 Keyboard p and P
0x14 Keyboard q and Q
0x15 Keyboard r and R
0x16 Keyboard s and S
0x17 Keyboard t and T
0x18 Keyboard u and U
0x19 Keyboard v and V
0x1A Keyboard w and W
0x1B Keyboard x and X
0x1C Keyboard y and Y
0x1D Keyboard z and Z
0x1E Keyboard 1 and !
0x1F Keyboard 2 and @
0x20 Keyboard 3 and #
0x21 Keyboard 4 and $
0x22 Keyboard 5 and %

HID key code values don't correspond to ASCII key codes! For example, 'a' has an HID keycode value of '04',
and there is no keycode for an upper case 'A' since you use the modifier to set upper case values. For
details, google 'usb hid keyboard scan codes', and see the example below.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 117 of 211

http://www.freebsddiary.org/APC/usb_hid_usages.php

0x23 Keyboard 6 and ^
0x24 Keyboard 7 and &
0x25 Keyboard 8 and *
0x26 Keyboard 9 and (
0x27 Keyboard 0 and)
0x28 Keyboard Return (ENTER)
0x29 Keyboard ESCAPE
0x2A Keyboard DELETE (Backspace)
0x2B Keyboard Tab
0x2C Keyboard Spacebar
0x2D Keyboard - and (underscore)
0x2E Keyboard = and +
0x2F Keyboard [and {
0x30 Keyboard] and }
0x31 Keyboard \ and |
0x32 Keyboard Non-US # and ~
0x33 Keyboard ; and :
0x34 Keyboard ' and "
0x35 Keyboard Grave Accent and Tilde
0x36 Keyboard, and <
0x37 Keyboard . and >
0x38 Keyboard / and ?
0x39 Keyboard Caps Lock
0x3A Keyboard F1
0x3B Keyboard F2
0x3C Keyboard F3
0x3D Keyboard F4
0x3E Keyboard F5
0x3F Keyboard F6
0x40 Keyboard F7
0x41 Keyboard F8
0x42 Keyboard F9
0x43 Keyboard F10
0x44 Keyboard F11
0x45 Keyboard F12
0x46 Keyboard PrintScreen
0x47 Keyboard Scroll Lock
0x48 Keyboard Pause
0x49 Keyboard Insert
0x4A Keyboard Home
0x4B Keyboard PageUp
0x4C Keyboard Delete Forward
0x4D Keyboard End
0x4E Keyboard PageDown
0x4F Keyboard RightArrow
0x50 Keyboard LeftArrow
0x51 Keyboard DownArrow
0x52 Keyboard UpArrow
0x53 Keypad Num Lock and Clear
0x54 Keypad /
0x55 Keypad *
0x56 Keypad -
0x57 Keypad +
0x58 Keypad ENTER
0x59 Keypad 1 and End
0x5A Keypad 2 and Down Arrow
0x5B Keypad 3 and PageDn
0x5C Keypad 4 and Left Arrow
0x5D Keypad 5
0x5E Keypad 6 and Right Arrow

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 118 of 211

0x5E Keypad 6 and Right Arrow
0x5F Keypad 7 and Home
0x60 Keypad 8 and Up Arrow
0x61 Keypad 9 and PageUp
0x62 Keypad 0 and Insert
0x63 Keypad . and Delete
0x64 Keyboard Non-US \ and |
0x65 Keyboard Application
0x66 Keyboard Power
0x67 Keypad =
0x68 Keyboard F13
0x69 Keyboard F14
0x6A Keyboard F15
0x6B Keyboard F16
0x6C Keyboard F17
0x6D Keyboard F18
0x6E Keyboard F19
0x6F Keyboard F20
0x70 Keyboard F21
0x71 Keyboard F22
0x72 Keyboard F23
0x73 Keyboard F24
0x74 Keyboard Execute
0x75 Keyboard Help
0x76 Keyboard Menu
0x77 Keyboard Select
0x78 Keyboard Stop
0x79 Keyboard Again
0x7A Keyboard Undo
0x7B Keyboard Cut
0x7C Keyboard Copy
0x7D Keyboard Paste
0x7E Keyboard Find
0x7F Keyboard Mute
0x80 Keyboard Volume Up
0x81 Keyboard Volume Down
0x82 Keyboard Locking Caps Lock
0x83 Keyboard Locking Num Lock
0x84 Keyboard Locking Scroll Lock
0x85 Keypad Comma
0x86 Keypad Equal Sign
0x87 Keyboard International1
0x88 Keyboard International2
0x89 Keyboard International3
0x8A Keyboard International4
0x8B Keyboard International5
0x8C Keyboard International6
0x8D Keyboard International7
0x8E Keyboard International8
0x8F Keyboard International9
0x90 Keyboard LANG1
0x91 Keyboard LANG2
0x92 Keyboard LANG3
0x93 Keyboard LANG4
0x94 Keyboard LANG5
0x95 Keyboard LANG6
0x96 Keyboard LANG7
0x97 Keyboard LANG8
0x98 Keyboard LANG9
0x99 Keyboard Alternate Erase
0x9A Keyboard SysReq/Attention

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 119 of 211

0x9A Keyboard SysReq/Attention
0x9B Keyboard Cancel
0x9C Keyboard Clear
0x9D Keyboard Prior
0x9E Keyboard Return
0x9F Keyboard Separator
0xA0 Keyboard Out
0xA1 Keyboard Oper
0xA2 Keyboard Clear/Again
0xA3 Keyboard CrSel/Props
0xA4 Keyboard ExSel
0xE0 Keyboard LeftControl
0xE1 Keyboard LeftShift
0xE2 Keyboard LeftAlt
0xE3 Keyboard Left GUI
0xE4 Keyboard RightControl
0xE5 Keyboard RightShift
0xE6 Keyboard RightAlt
0xE7 Keyboard Right GUI

The following example shows how you can use this command:

send 'abc' with left shift key (0x02) --> 'ABC'
AT+BLEKEYBOARDCODE=02-00-04-05-06-00-00
OK
Indicate that the keys were released (mandatory!)
AT+BLEKEYBOARDCODE=00-00
OK

AT+BLEHIDEN

This command will enable GATT over HID (GoH) support, which allows you to emulate a keyboard, mouse or media
controll on supported iOS, Android, OSX and Windows 10 devices. By default HID support is disabled, so you need to
set BLEHIDEN to 1 and then perform a system reset before the HID devices will be enumerated and appear in on your
central device.

Codebase Revision: 0.6.6

Parameters: 1 or 0 (1 = enable, 0 = disable)

Output: None

You normally need to 'bond' the Bluefruit LE peripheral to use the HID commands, and the exact bonding
process will change from one operating system to another.�

If you have previously bonded to a device and need to clear the bond, you can run the AT+FACTORYRESET
command which will erase all stored bond data on the Bluefruit LE module.�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 120 of 211

Enable GATT over HID support on the Bluefruit LE module
AT+BLEHIDEN=1
OK

Reset so that the changes take effect
ATZ
OK

AT+BLEHIDMOUSEMOVE

Moves the HID mouse or scroll wheen position the specified number of ticks.

All parameters are signed 8-bit values (-128 to +127). Positive values move to the right or down, and origin is the top
left corner.

Codebase Revision: 0.6.6

Parameters: X Ticks (+/-), Y Ticks (+/-), Scroll Wheel (+/-), Pan Wheel (+/-)

Output: None

Move the mouse 100 ticks right and 100 ticks down
AT+BLEHIDMOUSEMOVE=100,100
OK

Scroll down 20 pixels or lines (depending on context)
AT+BLEHIDMOUSEMOVE=,,20,
OK

Pan (horizontal scroll) to the right (exact behaviour depends on OS)
AT+BLEHIDMOUSEMOVE=0,0,0,100

AT+BLEHIDMOUSEBUTTON

Manipulates the HID mouse buttons via the specific string(s).

Codebase Revision: 0.6.6

Parameters: Button Mask String [L][R][M][B][F], Action [PRESS][CLICK][DOUBLECLICK][HOLD]

L = Left Button
R = Right Button
M = Middle Button
B = Back Button
F = Forward Button
If the second parameter (Action) is "HOLD", an optional third parameter can be passed specifying how long the
button should be held in milliseconds.

Output: None

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 121 of 211

Double click the left mouse button
AT+BLEHIDMOUSEBUTTON=L,doubleclick
OK

Press the left mouse button down, move the mouse, then release L
This is required to perform 'drag' then stop type operations
AT+BLEHIDMOUSEBUTTON=L
OK
AT+BLEHIDMOUSEMOVE=-100,50
OK
AT+BLEHIDMOUSEBUTTON=0
OK

Hold the backward mouse button for 200 milliseconds (OS dependent)
AT+BLEHIDMOUSEBUTTON=B,hold,200
OK

AT+BLEHIDCONTROLKEY

Sends HID media control commands for the bonded device (adjust volume, screen brightness, song selection, etc.).

Codebase Revision: 0.6.6

Parameters: The HID control key to send, followed by an optional delay in ms to hold the button

The control key string can be one of the following values:

System Controls (works on most systems)

BRIGHTNESS+
BRIGHTNESS-

Media Controls (works on most systems)

PLAYPAUSE
MEDIANEXT
MEDIAPREVIOUS
MEDIASTOP

Sound Controls (works on most systems)

VOLUME
MUTE
BASS
TREBLE
BASS_BOOST
VOLUME+
VOLUME-
BASS+
BASS-
TREBLE+
TREBLE-

Application Launchers (Windows 10 only so far)

EMAILREADER

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 122 of 211

CALCULATOR
FILEBROWSER

Browser/File Explorer Controls (Firefox on Windows/Android only)

SEARCH
HOME
BACK
FORWARD
STOP
REFRESH
BOOKMARKS

You can also send a raw 16-bit hexadecimal value in the '0xABCD' format. A full list of 16-bit 'HID Consumer Control
Key Codes' can be found here (https://adafru.it/cQV)(see section 12).

Output: Normally none.

Toggle the sound on the bonded central device
AT+BLEHIDCONTROLKEY=MUTE
OK

Hold the VOLUME+ key for 500ms
AT+BLEHIDCONTROLKEY=VOLUME+,500
OK

Send a raw 16-bit Consumer Key Code (0x006F = Brightness+)
AT+BLEHIDCONTROLKEY=0x006F
OK

AT+BLEHIDGAMEPADEN

Enables HID gamepad support in the HID service. By default the gamepad is disabled as of version 0.7.6 of the
firmware since it causes problems on iOS and OS X and should only be used on Android and Windows based devices.

Codebase Revision: 0.7.6

Parameters: Whether the gamepad service should be enabled via one of the following values:

on
off
1
0

Output: If executed with no parameters, a numeric value will be returned indicating whether the battery service is
enabled (1) or disabled (0).

If you are not bonded and connected to a central device, this command will return ERROR. Make sure you
are connected and HID support is enabled before running these commands.�

This command requires a system reset to take effect.�
© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 123 of 211

http://www.freebsddiary.org/APC/usb_hid_usages.php

AT+BLEHIDGAMEPAD

Sends a specific HID gamepad payload out over BLE

Codebase Revision: 0.7.0

Parameters: The following comma-separated parameters are available:

x: LEFT, RIGHT: If X=-1 then 'LEFT' is pressed, if X=1 then 'RIGHT' is pressed, if X=0 then neither left nor right are
pressed
y: UP, DOWN: If Y=-1 then 'UP' is pressed, if Y=1 then 'DOWN' is pressed, if Y=0 then neither up nor down are
pressed
buttons: 0x00-0xFF, which is a bit mask for 8 button 0-7

Output: Nothing

Press 'RIGHT' and 'Button0' at the same time
AT+BLEHIDGAMEPAD=1,0,0x01

Press 'UP' and 'Button1' + 'Button0' at the same time
AT+BLEHIDGAMEPAD=0,-1,0x03

AT+BLEMIDIEN

Enables or disables the BLE MIDI service.

Codebase Revision: 0.7.0

Parameters: State, which can be one of:

on
off
0
1

Output: If executed with no parameters, it will return the current state of the MIDI service as an integer indicating if it is
enabled (1) or disabled (0).

HID gamepad is disabled by default as of version 0.7.6, and must first be enabled via
AT+BLEHIDGAMEPADEN=1 before it can be used.�

Note: You need to send both 'press' and 'release' events for each button, otherwise the system will think that
the button is still pressed until a release state is received.�

Note: This command will require a reset to take effect.�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 124 of 211

Check the current state of the MIDI service
AT+BLEMIDIEN
1
OK

Enable the MIDI Service
AT+BLEMIDIEN=1
OK

AT+BLEMIDIRX

Reads an incoming MIDI character array from the buffer.

Codebase Revision: 0.7.0

Parameters: None

Output: The midi event in byte array format

AT+BLEMIDIRX
90-3C-7F
OK

AT+BLEMIDITX

Sends a MIDI event to host.

Codebase Revision: 0.7.0

Parameters: The MIDI event in hex array format, which can be either:

A series of full MIDI events (up to 4 events)
Exactly 1 full MIDI event + several running events without status (up to 7)

Output: None

Send 1 event (middle C with max velocity)
AT+BLEMIDITX=90-3C-7F
OK

Send 2 events
AT+BLEMIDITX=90-3C-7F-A0-3C-7F
OK

Send 1 full event + running event
AT+BLEMIDITX=90-3C-7F-3C-7F
OK

AT+BLEBATTEN

Enables the Battery Service following the definition from the Bluetooth SIG.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 125 of 211

Codebase Revision: 0.7.0

Parameters: Whether the battery service should be enabled, via on of the following values:

on
off
1
0

Output: If executed with no parameters, a numeric value will be returned indicating whether the battery service is
enabled (1) or disabled (0).

Enable the Battery Service
AT+BLEBATTEN=1
OK

AT+BLEBATTVAL

Sets the current battery level in percentage (0..100) for the Battery Service (if enabled).

Codebase Revision: 0.7.0

Parameters: The percentage for the battery in the range of 0..100.

Output: If executed with no parameters, the current battery level stored in the characteristic.

Set the battery level to 72%
AT+BLEBATTVAL=72
OK

This command requires a system reset to take effect.�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 126 of 211

BLE GAP

GAP (https://adafru.it/iCo), which stands for the Generic Access Profile, governs advertising and connections with
Bluetooth Low Energy devices.

The following commands can be used to configure the GAP settings on the BLE module.

You can use these commands to modify the advertising data (for ex. the device name that appears during the
advertising process), to retrieve information about the connection that has been established between two devices, or
the disconnect if you no longer wish to maintain a connection.

AT+GAPCONNECTABLE

This command can be used to prevent the device from being 'connectable'.

Codebase Revision: 0.7.0

Parameters: Whether or not the device should advertise itself as connectable, using one of the following values:

yes
no
1
0

Output: The 'connectable' state of the device if no parameter is provided

Make the device non-connectable (advertising only)
AT+GAPCONNECTABLE=0
OK

Check the current connectability status
AT+GAPCONNECTABLE
1
OK

AT+GAPGETCONN

Diplays the current connection status (if we are connected to another BLE device or not).

Codebase Revision: 0.3.0

Parameters: None

Output: 1 if we are connected, otherwise 0

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 127 of 211

file:///introduction-to-bluetooth-low-energy/gap

Connected
AT+GAPGETCONN
1
OK

Not connected
AT+GAPGETCONN
0
OK

AT+GAPDISCONNECT

Disconnects to the external device if we are currently connected.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT+GAPDISCONNECT
OK

AT+GAPDEVNAME

Gets or sets the device name, which is included in the advertising payload for the Bluefruit LE module

Codebase Revision: 0.3.0

Parameters:

None to read the current device name
The new device name if you want to change the value

Output: The device name if the command is executed in read mode

Read the current device name
AT+GAPDEVNAME
UART
OK

Update the device name to 'BLEFriend'
AT+GAPDEVNAME=BLEFriend
OK
Reset to take effect
ATZ
OK

Updating the device name will persist the new value to non-volatile memory, and the updated name will be
used when the device is reset. To reset the device to factory settings and clean the config data from memory
run the AT+FACTORYRESET command.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 128 of 211

AT+GAPDELBONDS

Deletes and bonding information stored on the Bluefruit LE module.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT+GAPDELBONDS
OK

AT+GAPINTERVALS

Gets or sets the various advertising and connection intervals for the Bluefruit LE module.

Be extremely careful with this command since it can be easy to cause problems changing the intervals, and depending
on the values selected some mobile devices may no longer recognize the module or refuse to connect to it.

Codebase Revision: 0.3.0

Parameters: If updating the GAP intervals, the following comma-separated values can be entered:

Minimum connection interval (in milliseconds)
Maximum connection interval (in milliseconds)
Fast Advertising interval (in milliseconds)
Fast Advertising timeout (in seconds)
>= 0.7.0: Low power advertising interval (in milliseconds), default = 417.5 ms

Please note the following min and max limitations for the GAP parameters:

Absolute minimum connection interval: 10ms
Absolute maximum connection interval: 4000ms
Absolute minimum fast advertising interval: 20ms
Absolute maximum fast advertisting interval: 10240ms
Absolute minimum low power advertising interval: 20ms
Absolute maximum low power advertising interval: 10240ms

Output: If reading the current GAP interval settings, the following comma-separated information will be displayed:

To save power, the Bluefruit modules automatically drop to a lower advertising rate after 'fast advertising
timeout' seconds. The default value is 30 seconds ('Fast Advertising Timeout'). The low power advertising
interval is hard-coded to approximately 0.6s in firmware < 0.7.0. Support to control the low power interval was
added in the 0.7.0 firmware release via an optional fifth parameter.

�

If you only wish to update one interval value, leave the other comma-separated values empty (ex. ',,110,' will
only update the third value, advertising interval).�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 129 of 211

Minimum connection interval (in milliseconds)
Maximum connection interval (in milliseconds)
Advertising interval (in milliseconds)
Advertising timeout (in milliseconds)

Read the current GAP intervals
AT+GAPINTERVALS
20,100,100,30

Update all values
AT+GAPINTERVALS=20,200,200,30
OK

Update only the advertising interval
AT+GAPINTERVALS=,,150,
OK

AT+GAPSTARTADV

Causes the Bluefruit LE module to start transmitting advertising packets if this isn't already the case (assuming we
aren't already connected to an external device).

Codebase Revision: 0.3.0

Parameters: None

Output: None

Command results when advertising data is not being sent
AT+GAPSTARTADV
OK

Command results when we are already advertising
AT+GAPSTARTADV
ERROR

Command results when we are connected to another device
AT+GAPSTARTADV
ERROR

AT+GAPSTOPADV

Stops advertising packets from being transmitted by the Bluefruit LE module.

Codebase Revision: 0.3.0

Parameters: None

Updating the GAP intervals will persist the new values to non-volatile memory, and the updated values will be
used when the device is reset. To reset the device to factory settings and clean the config data from memory
run the AT+FACTORYRESET command.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 130 of 211

Output: None

AT+GAPSTOPADV
OK

AT+GAPSETADVDATA

Sets the raw advertising data payload to the specified byte array (overriding the normal advertising data), following the
guidelines in the Bluetooth 4.0 or 4.1 Core Specification (https://adafru.it/ddd).

In particular, Core Specification Supplement (CSS) v4 contains the details on common advertising data fields like
'Flags' (Part A, Section 1.3) and the various Service UUID lists (Part A, Section 1.1). A list of all possible GAP Data Types
is available on the Bluetooth SIG's Generic Access Profile (https://adafru.it/cYs) page.

The Advertising Data payload consists of Generic Access Profile (https://adafru.it/cYs) data that is inserted into the
advertising packet in the following format: [U8:LEN] [U8:Data Type Value] [n:Value]

For example, to insert the 'Flags' Data Type (Data Type Value 0x01), and set the value to 0x06/0b00000110 (BR/EDR
Not Supported and LE General Discoverable Mode) we would use the following byte array:

02-01-06

0x02 indicates the number of bytes in the entry
0x01 is the 'Data Type Value (https://adafru.it/cYs)' and indicates that this is a 'Flag'
0x06 (0b00000110) is the Flag value, and asserts the following fields (see Core Specification 4.0, Volume 3, Part
C, 18.1):

LE General Discoverable Mode (i.e. anyone can discover this device)
BR/EDR Not Supported (i.e. this is a Bluetooth Low Energy only device)

If we also want to include two 16-bit service UUIDs in the advertising data (so that listening devices know that we
support these services) we could append the following data to the byte array:

05-02-0D-18-0A-18

WARNING: This command requires a degree of knowledge about the low level details of the Bluetooth 4.0 or
4.1 Core Specification, and should only be used by expert users. Misuse of this command can easily cause
your device to be undetectable by central devices in radio range.

�

WARNING: This command will override the normal advertising payload and may prevent some services from
acting as expected.�

To restore the advertising data to the normal default values use the AT+FACTORYRESET command.�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 131 of 211

https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile

0x05 indicates that the number of bytes in the entry (5)
0x02 is the 'Data Type Value (https://adafru.it/cYs)' and indicates that this is an 'Incomplete List of 16-bit Service
Class UUIDs'
0x0D 0x18 is the first 16-bit UUID (which translates to 0x180D, corresponding to the Heart Rate
Service (https://adafru.it/ddB)).
0x0A 0x18 is another 16-bit UUID (which translates to 0x180A, corresponding to the Device Information
Service (https://adafru.it/ecj)).

Codebase Revision: 0.3.0

Parameters: The raw byte array that should be inserted into the advertising data section of the advertising packet,
being careful to stay within the space limits defined by the Bluetooth Core Specification.

Response: None

Advertise as Discoverable and BLE only with 16-bit UUIDs 0x180D and 0x180A
AT+GAPSETADVDATA=02-01-06-05-02-0d-18-0a-18
OK

The results of this command can be seen in the screenshot below, taken from a sniffer analyzing the advertising
packets in Wireshark. The advertising data payload is higlighted in blue in the raw byte array at the bottom of the
image, and the packet analysis is in the upper section:

Including the service UUIDs is important since some mobile applications will only work with devices that
advertise a specific service UUID in the advertising packet. This is true for most apps from Nordic
Semiconductors, for example.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 132 of 211

https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.heart_rate.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml

BLE GATT

GATT (https://adafru.it/iCp), which standards for the Generic ATTribute Profile, governs data organization and data
exchanges between connected devices. One device (the peripheral) acts as a GATT Server, which stores data in
Attribute records, and the second device in the connection (the central) acts as a GATT Client, requesting data from
the server whenever necessary.

The following commands can be used to create custom GATT services and characteristics on the BLEFriend, which are
used to store and exchange data.

Please note that any characteristics that you define here will automatically be saved to non-volatile FLASH config
memory on the device and re-initialised the next time the device starts.

GATT Limitations

The commands below have the following limitations due to SRAM and resource availability, which should be kept in
mind when creating or working with customer GATT services and characteristics.

These values apply to firmware 0.7.0 and higher:

Maximum number of services: 10
Maximum number of characteristics: 30
Maximum buffer size for each characteristic: 32 bytes
Maximum number of CCCDs: 16

If you want to clear any previous config value, enter the 'AT+FACTORYRESET' command before working on a new
peripheral configuration.

AT+GATTCLEAR

Clears any custom GATT services and characteristics that have been defined on the device.

Codebase Revision: 0.3.0

Parameters: None

Response: None

AT+GATTCLEAR
OK

AT+GATTADDSERVICE

Adds a new custom service definition to the device.

Codebase Revision: 0.3.0

You need to perform a system reset via 'ATZ' before most of the commands below will take effect!�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 133 of 211

file:///introduction-to-bluetooth-low-energy/gatt

Parameters: This command accepts a set of comma-separated key-value pairs that are used to define the service
properties. The following key-value pairs can be used:

UUID: The 16-bit UUID to use for this service. 16-bit values should be in hexadecimal format (0x1234).
UUID128: The 128-bit UUID to use for this service. 128-bit values should be in the following format: 00-11-22-33-
44-55-66-77-88-99-AA-BB-CC-DD-EE-FF

Response: The index value of the service in the custom GATT service lookup table. (It's important to keep track of
these index values to work with the service later.)

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
1
OK

Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a custom service to the peripheral
AT+GATTADDSERVICE=UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
1
OK

Add a custom characteristic to the above service (making sure that there
is no conflict between the 16-bit UUID and bytes 3+4 of the 128-bit service UUID)
AT+GATTADDCHAR=UUID=0x0002,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
1
OK

AT+GATTADDCHAR

Adds a custom characteristic to the last service that was added to the peripheral (via AT+GATTADDSERVICE).

Note: Key values are not case-sensitive�
Only one UUID type can be entered for the service (either UUID or UUID128)�

AT+GATTADDCHAR must be run AFTER AT+GATTADDSERVICE, and will add the new characteristic to the
last service definition that was added.�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 134 of 211

Codebase Revision: 0.3.0

Parameters: This command accepts a set of comma-separated key-value pairs that are used to define the
characteristic properties. The following key-value pais can be used:

UUID: The 16-bit UUID to use for the characteristic (which will be insert in the 3rd and 4th bytes of the parent
services 128-bit UUID). This value should be entered in hexadecimal format (ex. 'UUID=0x1234'). This value must
be unique, and should not conflict with bytes 3+4 of the parent service's 128-bit UUID.
PROPERTIES: The 8-bit characteristic properties field, as defined by the Bluetooth SIG. The following values can
be used:

0x02 - Read
0x04 - Write Without Response
0x08 - Write
0x10 - Notify
0x20 - Indicate

MIN_LEN: The minimum size of the values for this characteristic (in bytes, min = 1, max = 20, default = 1)
MAX_LEN: The maximum size of the values for the characteristic (in bytes, min = 1, max = 20, default = 1)
VALUE: The initial value to assign to this characteristic (within the limits of 'MIN_LEN' and 'MAX_LEN'). Value can
be an integer ("-100", "27"), a hexadecimal value ("0xABCD"), a byte array ("aa-bb-cc-dd") or a string ("GATT!").
>=0.7.0 - DATATYPE: This argument indicates the data type stored in the characteristic, and is used to help
parse data properly. It can be one of the following values:

AUTO (0, default)
STRING (1)
BYTEARRAY (2)
INTEGER (3)

>=0.7.0 - DESCRIPTION: Adds the specified string as the characteristic description entry
>=0.7.0 - PRESENTATION: Adds the specified value as the characteristic presentation format entry

Response: The index value of the characteristic in the custom GATT characteristic lookup table. (It's important to keep
track of these characteristic index values to work with the characteristic later.)

As of version 0.6.6 of the Bluefruit LE firmware you can now use custom 128-bit UUIDs with this command.
See the example at the bottom of this command description.�

Note: Key values are not case-sensitive�
Make sure that the 16-bit UUID is unique and does not conflict with bytes 3+4 of the 128-bit service UUID�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 135 of 211

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
1
OK

Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a custom service to the peripheral
AT+GATTADDSERVICE=UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
1
OK

Add a custom characteristic to the above service (making sure that there
is no conflict between the 16-bit UUID and bytes 3+4 of the 128-bit service UUID)
AT+GATTADDCHAR=UUID=0x0002,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
1
OK

Version 0.6.6 of the Bluefruit LE firmware added the ability to use a new 'UUID128' flag to add custom 128-bit UUIDs
that aren't related to the parent service UUID (which is used when passing the 16-bit 'UUID' flag).

To specify a 128-bit UUID for your customer characteristic, enter a value resembling the following syntax:

Add a custom characteristic to the above service using a
custom 128-bit UUID
AT+GATTADDCHAR=UUID128=00-11-22-33-44-55-66-77-88-99-AA-BB-CC-DD-EE-
FF,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
1
OK

Version 0.7.0 of the Bluefruit LE firmware added the new DESCRIPTION and PRESENTATION keywoards,
corresponding the the GATT Characteristic User Description (https://adafru.it/oIA) and the GATT Characteristic
Presentation Format (https://adafru.it/oIB) Descriptors.

The DESCRIPTION field is a string that contains a short text description of the characteristic. Some apps may not
display this data, but it should be visible using something like the Master Control Panel application from Nordic on iOS
and Android.

The PRESENTATION field contains a 7-byte payload that encapsulates the characteristic presentation format data. It
requires a specific set of bytes and values to work properly. See the following link for details on how to format the
payload: https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?
u=org.bluetooth.descriptor.gatt.characteristic_presentation_format.xml (https://adafru.it/oIB)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 136 of 211

https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_user_description.xml
https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_presentation_format.xml
https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_presentation_format.xml

The following example shows how you might use both of these new fields:

AT+GATTADDCHAR=UUID=0x2A37, PROPERTIES=0x10, MIN_LEN=2, MAX_LEN=3, VALUE=00-40,
 DESCRIPTION=HRM Measurement, PRESENTATION=17-00-AC-27-01-00-00

For the Characteristic Presentation Format we have:

Format = IEEE-11073 32-bit FLOAT (Decimal 23, Hex 0x17)
Exponent = 0/None
Unit = Thermodynamic temperature: Degrees Fahrenheit (0x27AC) - Bluetooth LE Unit List (https://adafru.it/oID)
Namespace = Bluetooth SIG Assigned Number (0x01)
Description = None (0x0000)

The results from Nordic's Master Control Panel app can be seen below:

AT+GATTCHAR

Gets or sets the value of the specified custom GATT characteristic (based on the index ID returned when the
characteristic was added to the system via AT+GATTADDCHAR).

Codebase Revision: 0.3.0

Parameters: This function takes one or two comma-separated functions (one parameter = read, two parameters =
write).

The first parameter is the characteristic index value, as returned from the AT+GATTADDCHAR function. This
parameter is always required, and if no second parameter is entered the current value of this characteristic will
be returned.
The second (optional) parameter is the new value to assign to this characteristic (within the MIN_SIZE and
MAX_SIZE limits defined when creating it).

Response: If the command is used in read mode (only the characteristic index is provided as a value), the response will
display the current value of the characteristics. If the command is used in write mode (two comma-separated values
are provided), the characteristics will be updated to use the provided value.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 137 of 211

https://www.bluetooth.com/specifications/assigned-numbers/units

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
1
OK

Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK

Read the battery measurement characteristic (index ID = 1)
AT+GATTCHAR=1
0x64
OK

Update the battery measurement characteristic to 32 (hex 0x20)
AT+GATTCHAR=1,32
OK

Verify the previous write attempt
AT+GATTCHAR=1
0x20
OK

AT+GATTLIST

Lists all custom GATT services and characteristics that have been defined on the device.

Codebase Revision: 0.3.0

Parameters: None

Response: A list of all custom services and characteristics defined on the device.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 138 of 211

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
1
OK

Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK

Add a custom service to the peripheral
AT+GATTADDSERVICE=UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
2
OK

Add a custom characteristic to the above service (making sure that there
is no conflict between the 16-bit UUID and bytes 3+4 of the 128-bit service UUID)
AT+GATTADDCHAR=UUID=0x0002,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
2
OK

Get a list of all custom GATT services and characteristics on the device
AT+GATTLIST
ID=01,UUID=0x180F
 ID=01,UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,MAX_LEN=1,VALUE=0x64
ID=02,UUID=0x11, UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
 ID=02,UUID=0x02,PROPERTIES=0x02,MIN_LEN=1,MAX_LEN=1,VALUE=0x64
OK

AT+GATTCHARRAW

This read only command reads binary (instead of ASCII) data from a characteristic. It is non-printable but has less
overhead and is easier when writing libraries in Arduino.

Codebase Revision: 0.7.0

Parameters: The numeric ID of the characteristic to display the data for

Output: Binary data corresponding to the specified characteristic.

Note: This is a specialized command and no NEWLINE is present at the end of the command!�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 139 of 211

Debug

The following debug commands are available on Bluefruit LE modules:

AT+DBGMEMRD

Displays the raw memory contents at the specified address.

Codebase Revision: 0.3.0

Parameters: The following comma-separated parameters can be used with this command:

The starting address to read memory from (in hexadecimal form, with or without the leading '0x')
The word size (can be 1, 2, 4 or 8)
The number of words to read

Output: The raw memory contents in hexadecimal format using the specified length and word size (see examples
below for details)

Read 12 1-byte values starting at 0x10000009
AT+DBGMEMRD=0x10000009,1,12
FF FF FF FF FF FF FF 00 04 00 00 00
OK

Try to read 2 4-byte values starting at 0x10000000
AT+DBGMEMRD=0x10000000,4,2
55AA55AA 55AA55AA
OK

Try to read 2 4-byte values starting at 0x10000009
This will fail because the Cortex M0 can't perform misaligned
reads, and any non 8-bit values must start on an even address
AT+DBGMEMRD=0x10000009,4,2
MISALIGNED ACCESS
ERROR

AT+DBGNVMRD

Displays the raw contents of the config data section of non-volatile memory

Codebase Revision: 0.3.0

Properties: None

Output: The raw config data from non-volatile memory

Use these commands with care since they can easily lead to a HardFault error on the ARM core, which will
cause the device to stop responding.�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 140 of 211

AT+DBGNVMRD
FE CA 38 05 00 03 00 00 01 12 01 00 55 41 52 54 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 14 00 64 00 64 00 1E 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00
00 00 00 01 00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00 00 BA FF 00 00
OK

AT+DBGSTACKSIZE

Returns the current stack size, to help detect stack overflow or detect stack memory usage when optimising memory
usage on the system.

Codebase Revision: 0.4.7

Parameters: None

Output: The current size of stack memory in bytes

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 141 of 211

AT+DBGSTACKSIZE
1032
OK

AT+DBGSTACKDUMP

Dumps the current stack contents. Unused sections of stack memory are filled with '0xCAFEFOOD' to help determine
where stack usage stops.

This command is purely for debug and development purposes.

Codebase Revision: 0.4.7

Parameters: None

Output: The memory contents of the entire stack region

AT+DBGSTACKDUMP
0x20003800: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003810: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003820: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003830: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003840: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003850: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003860: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003870: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003880: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003890: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038A0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038B0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038C0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038D0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038E0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038F0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003900: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003910: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003920: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003930: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003940: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003950: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003960: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003970: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003980: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003990: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039A0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039B0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039C0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039D0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039E0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039F0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A00: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A10: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A20: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A30: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A40: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A50: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A60: CAFEF00D CAFEF00D CAFEF00D CAFEF00D

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 142 of 211

0x20003A60: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A70: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A80: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A90: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AA0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AB0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AC0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AD0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AE0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AF0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B00: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B10: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B20: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B30: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B40: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B50: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B60: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B70: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B80: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B90: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BA0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BB0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BC0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BD0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BE0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BF0: CAFEF00D CAFEF00D 00000000 CAFEF00D
0x20003C00: 00000004 20001D04 CAFEF00D FFFFEF68
0x20003C10: CAFEF00D 00001098 CAFEF00D CAFEF00D
0x20003C20: CAFEF00D CAFEF00D 00001006 200018D8
0x20003C30: 00000001 200018D8 20001C50 00000004
0x20003C40: 20001BB0 000134A5 0000100D 20001D28
0x20003C50: 00000006 00000006 20001C38 20001D44
0x20003C60: 20001C6C 20001D44 00000006 00000005
0x20003C70: 20001D38 00000005 20001D38 00000000
0x20003C80: 00000001 00012083 200018C8 000013D3
0x20003C90: 00550000 00000001 80E80000 4FC40000
0x20003CA0: 000080E8 00000009 60900000 000080E8
0x20003CB0: 60140000 20002764 0009608F 000080E8
0x20003CC0: 80000000 000080E8 00000000 00129F5F
0x20003CD0: 00000000 0001E4D9 80E80000 200018C8
0x20003CE0: 200018D4 00000000 80E80000 000000FF
0x20003CF0: 0000011C 0001BCE1 0000203A 0001BC1D
0x20003D00: 00000000 0001BC1D 80E80000 0001BCE1
0x20003D10: 0000011C 0001BDA9 80E80000 0001BDA9
0x20003D20: 0000011C FFFFFFF9 008B8000 0001BC1D
0x20003D30: 00000048 00000010 0000A000 00000009
0x20003D40: 0001E326 00000001 80E80000 51538000
0x20003D50: 000080E8 0001E9CF 00000000 00000009
0x20003D60: 61C78000 000080E8 00000048 00000504
0x20003D70: 0000A1FC 0002125C 00000000 000080E8
0x20003D80: 00000000 0012A236 00000000 0001E4D9
0x20003D90: 000080E8 00000009 00004998 000080E8
0x20003DA0: 622C8000 0012A29B 00000042 0001E479
0x20003DB0: 40011000 000185EF 00006E10 00000000
0x20003DC0: 00000000 00000004 0000000C 00000000
0x20003DD0: 62780000 00018579 2000311B 0001ACDF
0x20003DE0: 00000000 20003054 20002050 00000001
0x20003DF0: 20003DF8 0002085D 00000001 200030D4
0x20003E00: 00000200 0001F663 00000001 200030D4
0x20003E10: 00000001 2000311B 0001F631 00020A6D

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 143 of 211

0x20003E10: 00000001 2000311B 0001F631 00020A6D
0x20003E20: 00000001 00000000 0000000C 200030D4
0x20003E30: 2000311B 00000042 200030D4 00020AD7
0x20003E40: 20002050 200030D4 20002050 00020833
0x20003E50: 20002050 20003F1B 20002050 0001FF89
0x20003E60: 20002050 0001FFA3 00000005 20003ED8
0x20003E70: 20002050 0001FF8B 00000010 00020491
0x20003E80: 00000001 0012A54E 00000020 00022409
0x20003E90: 00000000 20002050 200030D4 0001FF8B
0x20003EA0: 00021263 00000005 0000000C 20003F74
0x20003EB0: 20003ED8 20002050 200030D4 00020187
0x20003EC0: 20003ED4 20003054 00000000 20003F75
0x20003ED0: 00000008 20003F64 00000084 FFFFFFFF
0x20003EE0: FFFFFFFF 00000008 00000001 00000008
0x20003EF0: 20302058 2000311B 0001F631 00020A6D
0x20003F00: 20002050 00000000 0000000C 200030D4
0x20003F10: 32002050 32303032 00323330 000258D7
0x20003F20: 20002050 200030D4 20002050 00020833
0x20003F30: 00000000 20002050 00000020 000001CE
0x20003F40: 20003F40 200030D4 00000004 0001ED83
0x20003F50: 200030D4 20003F60 000001D6 000001D7
0x20003F60: 000001D8 00016559 0000000C 00000000
0x20003F70: 6C383025 00000058 200030D4 FFFFFFFF
0x20003F80: 1FFF4000 00000028 00000028 000217F8
0x20003F90: 200020C7 000166C5 000166AD 00017ED9
0x20003FA0: FFFFFFFF 200020B8 2000306C 200030D4
0x20003FB0: 200020B4 000180AD 1FFF4000 200020B0
0x20003FC0: 200020B0 200020B0 1FFF4000 0001A63D
0x20003FD0: CAFEF00D CAFEF00D 200020B4 00000002
0x20003FE0: FFFFFFFF FFFFFFFF 1FFF4000 00000000
0x20003FF0: 00000000 00000000 00000000 00016113
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 144 of 211

History

This page tracks additions or changes to the AT command set based on the firmware version number (which you can
obtain via the 'ATI' command):

Version 0.7.7

The following AT commands and features were added in the 0.7.7 release:

Added AT+BLEUARTTXF (F for force) to immediately send the specified data out in an BLE UART packet (max 20
bytes), bypassing any FIFO delays and avoiding packets potentially being transmitted in two transactions.
Adjusted BLE UART service to use min connection interval as the tx interval
Added AT+DFUIRQ to enable using the DFU Pin for IRQ purposes when there is a supported event on the
nRF51822
Enabled the internal pullup resistor on the CS pin for Bluefruit SPI boards
Added AT+MODESWITCHEN to enable/disable +++ mode switching from the local (serial or SPI) or BLE UART
side. By default local = enabled, ble = disabled, meaning commands can only be executed via the local interface
by default.
Implemented a '\+' escape code to immediately send '+' chars without trigger the +++ delay waiting for further
similar input
Added AT+BLEHIDGAMEPADEN to separately enable HID Gamepad, since iOS/OSX has a conflict with gamepad
devices causing HID keyboard to not work properly.

The following bugs were fixed in release 0.7.7:

Fixed a factory reset issue when a long delay occurs in app_error_handler()
Fixed an issue where strings were being truncated at 64 chars in UART
Fixed HID keyboard support not working with iOS 9 & 10

Version 0.7.0

The following AT commands were added in the 0.7.0 release:

AT+BAUDRATE
Change the HW UART baudrate
AT+UARTFLOW
Enable or disable HW UART flow control
AT+BLEMIDIEN=on/off/0/1
Enable/disable MIDI service, requires a reset to take affect
AT+BLEMIDITX
Send a MIDI event
AT+BLEMIDIRX
Receive an available MIDI event
AT+GATTCHARRAW
Added this read only command to read binary (instead of ASCII) data from a characteristic. It is non-printable but
less overhead and easier for writing library in Arduino
AT+NVMWRITE=offset,datatype,data
Writes data to 256 byte user NVM. Datatype must be STRING (1), BYTEARRAY (2), or INTEGER (3)
AT+NVMREAD=offset,size,datatype
Reads data back from 256 bytes user NVM

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 145 of 211

AT+NVMREADRAW=offset,size binary data
Binary data (instead of ASCII) is returned, ending with "OK\r\n". It is non-printable but less overhead and easier to
use in some situations.
AT+BLEHIDGAMEPAD=x,y,buttons

X is LEFT, RIGHT: X=-1 LEFT is pressed, X=1 RIGHT is pressed, X=0 no pressed
Y is UP, DOWN: Y=-1 i UP, Y=1 is DOWN, Y=0 no pressed
Button [0x00-0xFF] is a bit mask for 8 button 0-7

AT+GAPCONNECTABLE=on/off/1/0
Allow/disallow connection to the device
AT+EDDYSTONESERVICEEN
Add/remove EddyStone service to GATT table (requires reset)
AT+EDDYSTONEBROADCAST=on/off/0/1
Start/stop broadcasting url using settings from NVM
AT+BLEBATTEN=on/off/1/0
Enable battery service. Reset required due to the service change.
AT+BLEBATTVAL=percent
Updates the Battery level, percent is 0 to 100

The following commands were changed in the 0.7.0 release:

AT+GATTADDCHAR

Added a DATATYPE option to indicate the data type for the GATT characteristic's payload. Valid option are:
AUTO (0, default), STRING (1), BYTEARRAY (2), INTEGER (3)
Added characteristic user description option via the DESCRIPTION flag
Added characteristic presentation format support via the PRESENTATION flag

AT+GAPINTERVALS
Added a new 'adv_lowpower_interval' parameter, default value is 417.5 ms. Current arguments are
now: min_conn, max_conn, adv_interval, adv_timeout, adv_lowpower_interval

Key bug fixes and changes in this release:

Significant BTLE UART speed and reliability improvements
Added callback support (work in progress) for:

BLE UART RX
GATT Characteristic(s) RX
MIDI RX
Connect/Disconnect

Increased MAX_LEN for each characteristic from 20 to 32 bytes
Changed the default GAP parameters:

Advertising interval = 20ms
Min connection interval = 20 ms
Max connection interval = 40 ms

Increased the maximum number of CCCDs saved to flash from 8 to 16
Eddystone config service disabled by default
Removed AT+EDDYSTONEENABLE to avoid confusion
Changed advertising timeout for Eddystone to 'unlimited'
Fixed Write-No-Response characteristic property, which wasn't being handled properly
Fixed timing constraints to meet Apple design guidelines

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 146 of 211

Fixed systick to ms calculation
Fixed all tests with google eddystone validator except for writing tx_power = 1 dB (not valid on nrf51)
Fixed a bug where writing from the central does not update the value on the characteristic correctly
Fixed an issue with HID examples, where when paired with Central, a disconnect then reconnect could not send
HID reports anymore

Version 0.6.7

The following AT commands were added in the 0.6.7 release:

AT+BLEUARTFIFO
Returns the number of free bytes available in the TX and RX FIFOs for the Bluetooth UART Service.

The following commands were changed in the 0.6.7 release:

AT+BLEUARTTX
If the TX FIFO is full, the command will wait up to 200ms to see if the FIFO size decreases before exiting and
returning an ERROR response due to the FIFO being full.
AT+BLEURIBEACON
This command will go back to using the old (deprecated) UriBeacon UUID (0xFED8), and only the
AT+EDDYSTONEURL command will use the newer Eddystone UUID (0xFEAA).
AT+BLEKEYBOARD and AT+BLEUARTTX
These commands now accept '\?' as an escape code since 'AT+BLEKEYBOARD=?' has another meaning for the
AT parser. To send a single question mark the following command should be used: 'AT+BLEKEYBOARD=\?'
or 'AT+BLEUARTTX=\?'
AT+EDDYSTONEURL
This command now accepts an optional third parameter for RSSI at 0m value (default is -18dBm).
Running this command with no parameters ('AT+EDDYSTONEURL\r\n') will now return the current URL.

Key bug fixes in this release:

The FIFO handling for the Bluetooth UART Service was improved for speed and stability, and the TX and RF
FIFOs were increased to 1024 bytes each.
An issue where a timer overflow was causing factory resets every 4 hours or so has been resolved.
Fixed a problem with the GATT server where 'value_len' was being incorrectly parsed for integer values in
characteristics where 'max_len' >4

Version 0.6.6

The following AT commands were added in the 0.6.6 release:

AT+EDDYSTONEURL
Update the URL for the beacon and switch to beacon mode
AT+EDDYSTONEENABLE
Enable/disable beacon mode using the configured url
AT+EDDYSTONECONFIGEN
Enable advertising for the the Eddystone configuration service for the specified number of seconds
AT+HWMODELED
Allows the user to override the default MODE LED behaviour with one of the following options: DISABLE, MODE,
HWUART, BLEUART, SPI, MANUAL
AT+BLECONTROLKEY
Allows HID media control values to be sent to a bonded central device (volume, screen brightness, etc.)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 147 of 211

AT+BLEHIDEN
Enables or disables BLE HID support in the Bluefruit LE firmware (mouse, keyboard and media control)
AT+BLEMOUSEMOVE
To move the HID mouse
AT+BLEMOUSEBUTTON
To set the state of the HID mouse buttons

The following commands were changed in the 0.6.6 release:

AT+BLEKEYBOARDEN - Now an alias for AT+BLEHIDEN
AT+GATTADDCHAR - Added a new UUID128 field to allow custom UUIDs

Key bug fixes in this release:

Fixed issues with long beacon URLs
Fixed big endian issue in at+blebeacon for major & minor number

Known issues with this release:

Windows 10 seems to support a limited number of characteristics for the DIS service. We had to disable the Serial
Number characteristic to enable HID support with windows 10.

Version 0.6.5

The following AT commands were added in the 0.6.5 release:

AT+BLEGETPEERADDR (https://adafru.it/iCq)

The following commands were changed in the 0.6.5 release:

Increased the UART buffer size (on the nRF51) from 128 to 256 bytes
+++ now responds with the current operating mode
Fixed a bug with AT+GATTCHAR values sometimes not being saved to NVM
Fixed a bug with AT+GATTCHAR max_len value not being taken into account after a reset (min_len was always
used when repopulating the value)

Version 0.6.2

This is the first release targetting 32KB SRAM parts (QFAC). 16KB SRAM parts can't be used with this firmware due to
memory management issues, and should use the earlier 0.5.0 firmware.

The following AT commands were changed in the 0.6.2 release:

AT+BLEUARTTX (https://adafru.it/iCr)
Basic escape codes were added for new lines, tabs and backspace
AT+BLEKEYBOARD (https://adafru.it/iCr)
Also works with OS X now, and may function with other operating systems that support BLE HID keyboards

Version 0.5.0

The following AT commands were added in the 0.5.0 release:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 148 of 211

file:///introducing-adafruit-ble-bluetooth-low-energy-friend/ble-generic#at-plus-blegetpeeraddr
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-bleuartrx
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-blekeyboard

AT+BLEKEYBOARDEN (https://adafru.it/iCr)
AT+BLEKEYBOARD (https://adafru.it/iCr)
AT+BLEKEYBOARDCODE (https://adafru.it/iCr)

The following AT commands were changed in the 0.5.0 release:

ATI (https://adafru.it/iCs)
The SoftDevice, SoftDevice version and bootloader version were added as a new (7th) record. For Ex: "S110 7.1.0,
0.0" indicates version 7.1.0 of the S110 softdevice is used with the 0.0 bootloader (future boards will use a newer
0.1 bootloader).

Other notes concerning 0.5.0:

Starting with version 0.5.0, you can execute the AT+FACTORYRESET command at any point (and without a terminal
emulator) by holding the DFU button down for 10 seconds until the blue CONNECTED LED starts flashing, then
releasing it.

Version 0.4.7

The following AT commands were added in the 0.4.7 release:

+++ (https://adafru.it/iCs)
AT+HWRANDOM (https://adafru.it/iCt)
AT+BLEURIBEACON (https://adafru.it/iCu)
AT+DBGSTACKSIZE (https://adafru.it/iCv)
AT+DBGSTACKDUMP (https://adafru.it/iCv)

The following commands were changed in the 0.4.7 release:

ATI
 (https://adafru.it/iCs)The chip revision was added after the chip name. Whereas ATI would previously report
'nRF51822', it will now add the specific HW revision if it can be detected (ex 'nRF51822 QFAAG00')

Version 0.3.0

First public release

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 149 of 211

file:///introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-blekeyboarden
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-blekeyboard
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-blekeyboardcode
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/standard-at#ati
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/standard-at#plus-plus-plus
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/hardware#at-plus-hwrandom
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/beacon#at-plus-bleuribeacon
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/debug#at-plus-dbgstacksize
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/debug#at-plus-dbgstackdump
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/standard-at#ati

Command Examples

The following code snippets can be used when operating in Command Mode to perform specific tasks.

Heart Rate Monitor Service

The command list below will add a Heart Rate (https://adafru.it/ddB) service to the BLEFriend's attribute table, with two
characteristics:

Heart Rate Measurement (https://adafru.it/ddD)
Body Sensor Location (https://adafru.it/eck)

Perform a factory reset to make sure we get a clean start
AT+FACTORYRESET
OK

Add the Heart Rate service entry
AT+GATTADDSERVICE=UUID=0x180D
1
OK

Add the Heart Rate Measurement characteristic
AT+GATTADDCHAR=UUID=0x2A37, PROPERTIES=0x10, MIN_LEN=2, MAX_LEN=3, VALUE=00-40
1
OK

Add the Body Sensor Location characteristic
AT+GATTADDCHAR=UUID=0x2A38, PROPERTIES=0x02, MIN_LEN=1, VALUE=3
2
OK

Create a custom advertising packet that includes the Heart Rate service UUID
AT+GAPSETADVDATA=02-01-06-05-02-0d-18-0a-18
OK

Reset the device to start advertising with the custom payload
ATZ
OK

Update the value of the heart rate measurement (set it to 0x004A)
AT+GATTCHAR=1,00-4A
OK

Python Script

The following code performs the same function, but has been placed inside a Python wrapper using
PySerial (https://adafru.it/cLU) to show how you can script actions for the AT parser.

import io
import sys
import serial
import random
from time import sleep

filename = "hrm.py"

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 150 of 211

https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.heart_rate.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.heart_rate_measurement.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.body_sensor_location.xml
http://pyserial.sourceforge.net/

filename = "hrm.py"
ser = None
serio = None
verbose = True # Set this to True to see all of the incoming serial data

def usage():
 """Displays information on the command-line parameters for this script"""
 print "Usage: " + filename + " <serialPort>\n"
 print "For example:\n"
 print " Windows : " + filename + " COM14"
 print " OS X : " + filename + " /dev/tty.usbserial-DN009WNO"
 print " Linux : " + filename + " /dev/ttyACM0"
 return

def checkargs():
 """Validates the command-line arguments for this script"""
 if len(sys.argv) < 2:
 print "ERROR: Missing serialPort"
 usage()
 sys.exit(-1)
 if len(sys.argv) > 2:
 print "ERROR: Too many arguments (expected 1)."
 usage()
 sys.exit(-2)

def errorhandler(err, exitonerror=True):
 """Display an error message and exit gracefully on "ERROR\r\n" responses"""
 print "ERROR: " + err.message
 if exitonerror:
 ser.close()
 sys.exit(-3)

def atcommand(command, delayms=0):
 """Executes the supplied AT command and waits for a valid response"""
 serio.write(unicode(command + "\n"))
 if delayms:
 sleep(delayms/1000)
 rx = None
 while rx != "OK\r\n" and rx != "ERROR\r\n":
 rx = serio.readline(2000)
 if verbose:
 print unicode(rx.rstrip("\r\n"))
 # Check the return value
 if rx == "ERROR\r\n":
 raise ValueError("AT Parser reported an error on '" + command.rstrip() + "'")

if __name__ == '__main__':
 # Make sure we received a single argument (comPort)
 checkargs()

 # This will automatically open the serial port (no need for ser.open)
 ser = serial.Serial(port=sys.argv[1], baudrate=9600, rtscts=True)
 serio = io.TextIOWrapper(io.BufferedRWPair(ser, ser, 1),
 newline='\r\n',
 line_buffering=True)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 151 of 211

 # Add the HRM service and characteristic definitions
 try:
 atcommand("AT+FACTORYRESET", 1000) # Wait 1s for this to complete
 atcommand("AT+GATTCLEAR")
 atcommand("AT+GATTADDSERVICE=UUID=0x180D")
 atcommand("AT+GATTADDCHAR=UUID=0x2A37, PROPERTIES=0x10, MIN_LEN=2, MAX_LEN=3, VALUE=00-40")
 atcommand("AT+GATTADDCHAR=UUID=0x2A38, PROPERTIES=0x02, MIN_LEN=1, VALUE=3")
 atcommand("AT+GAPSETADVDATA=02-01-06-05-02-0d-18-0a-18")
 # Perform a system reset and wait 1s to come back online
 atcommand("ATZ", 1000)
 # Update the value every second
 while True:
 atcommand("AT+GATTCHAR=1,00-%02X" % random.randint(50, 100), 1000)
 except ValueError as err:
 # One of the commands above returned "ERROR\n"
 errorhandler(err)
 except KeyboardInterrupt:
 # Close gracefully on CTRL+C
 ser.close()
 sys.exit()

The results of this script can be seen below in the 'HRM' app of Nordic's nRF Toolbox application:

Please note that nRF Toolbox will only display HRM data if the value changes, so you will need to update the
Heart Rate Measurement characteristic at least once after opening the HRM app and connecting to the
BLEFriend

�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 152 of 211

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 153 of 211

SDEP (SPI Data Transport)

In order to facilitate switching between UART and SPI based Bluefruit LE modules, the Bluefruit LE SPI Friend and
Shield uses the same AT command set at the UART modules (ATI , AT+HELP , etc.).

These text-based AT commands are encoded as binary messages using a simple binary protocol we've named SDEP
(Simple Data Exhange Protocol).

SDEP Overview

SDEP was designed as a bus neutral protocol to handle binary commands and responses -- including error responses -
- in a standard, easy to extend manner. 'Bus neutral' means that we can use SDEP regardless of the transport
mechanism (USB HID, SPI, I2C, Wireless data over the air, etc.).

All SDEP messages have a four byte header, and in the case of the Bluefruit LE modules up to a 16 byte payloads.
Larger messages are broken up into several 4+16 bytes message chunks which are rebuilt at either end of the
transport bus. The 20 byte limit (4 byte header + 16 byte payload) was chosen to take into account the maximum
packet size in Bluetooth Low Energy 4.0 (20 bytes per packet).

SPI Setup

While SDEP is bus neutral, in the case of the Bluefruit LE SPI Friend or Shield, an SPI transport is used with the
following constraints and assumptions, largely to take into account the HW limitations of the nRF51822 system on chip:

SPI Hardware Requirements

The SPI clock should run <=4MHz
A 100us delay should be added between the moment that the CS line is asserted, and before any data is
transmitted on the SPI bus
The CS line must remain asserted for the entire packet, rather than toggling CS every byte
The CS line can however be deasserted and then reasserted between individual SDEP packets (of up to 20 bytes
each).
The SPI commands must be setup to transmit MSB (most significant bit (https://adafru.it/pBP)) first (not LSB first)

IRQ Pin

The IRQ line is asserted by the Bluefruit LE SPI Friend/Shield as long as an entire SDEP packet is available in the buffer
on the nRF51822, at which point you should read the packet, keeping the CS line asserted for the entire transaction (as
detailed above).

The IRQ line will remain asserted as long as one or more packets are available, so the line may stay high after reading
a packet, meaning that more packets are still available in the FIFO on the SPI secondary side.

SDEP Packet and SPI Error Identifier

Once CS has been asserted and the mandatory 100us delay has passed, a single byte should be read from the SPI bus
which will indicate the type of payload available on the nRF51822 (see Message Type Indicator below for more
information on SDEP message types). Keep CS asserted after this byte has been read in case you need to continue

Most of the time, you never need to deal with SDEP directly, but we've documented the protocol here in case
you need understand the Bluefruit LE SPI interface in depth!�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 154 of 211

https://en.wikipedia.org/wiki/Most_significant_bit

reading the rest of the frame.

If a standard SDEP message type indicator (0x10, 0x20, 0x40 or 0x80) is encountered, keep reading as normal. There
are two other indicators that should be taken into account, though, which indicate a problem on the nRF51822 SPI
secondary side:

0xFE: Secondary device not ready (wait a bit and try again)
0xFF: Secondary device read overflow indicator (you've read more data than is available)

This means there are six possible response bytes reading the message type indicator (the first byte read after an SDEP
command is sent): 0x10, 0x20, 0x40, 0x80, which indicate a valid message type, or 0xFE, 0xFF which indicate an error
condition.

Sample Transaction

The following image shows a sample SDEP response that is spread over two packets (since the response is > 20 bytes
in size). Notice that the IRQ line stays asserted between the packets since more than one packet was available in the
FIFO on the Bluefruit LE SPI side:

SDEP (Simple Data Exchange Protocol)

The Simple Data Exchange Protocol (SDEP) can be used to send and receive binary messages between two
connected devices using any binary serial bus (USB HID, USB Bulk, SPI, I2C, Wireless, etc.), exchanging data using one
of four distinct message types (Command, Response, Alert and Error messages).

The protocol is designed to be flexible and extensible, with the only requirement being that individual messages are
20 bytes or smaller, and that the first byte of every message is a one byte (U8) identifier that indicates the message
type, which defines the format for the remainder of the payload.

Endianness

All values larger than 8-bits are encoded in little endian format. Any deviation from this rule should be clearly
documented.

Message Type Indicator

The first byte of every message is an 8-bit identifier called the Message Type Indicator. This value indicates the type of
message being sent, and allows us to determine the format for the remainder of the message.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 155 of 211

SDEP Data Transactions

Either connected device can initiate SDEP transactions, though certain transport protocols imposes restrictions on who
can initiate a transfer. The main device, for example, always initiates transactions with Bluetooth Low Energy or USB,
meaning that secondary devices can only reply to incoming commands.

Every device that receives a Command Message must reply with a Response Message, Error Message or Alert
message.

Message Types

Command Messages

Command messages (Message Type = 0x10) have the following structure:

Command ID (bytes 1-2) and Payload Length (byte 3) are mandatory in any command message. The message payload
is optional, and will be ignored if Payload Length is set to 0 bytes. When a message payload is present, it’s length can
be anywhere from 1..16 bytes, to stay within the 20-byte maximum message length.

A long command (>16 bytes payload) must be divided into multiple packets. To facilitate this, the More data field (bit 7
of byte 3) is used to indicate whether additional packets are available for the same command. The SDEP receiver must
continue to reads packets until it finds a packet with More data == 0, then assemble all sub-packets into one command
if necessary.

The contents of the payload are user defined, and can change from one command to another.

A sample command message would be:

10 34 12 01 FF

Message Type

Command

Response

Alert

Error

ID (U8)

0x10

0x20

0x40

0x80

Name

Message Type

Command ID

Payload Length

Payload

Type

U8

U16

U8

...

Meaning

Always '0x10'

Unique Command Identifier

[7] More data

[6-5] Reserved

[4-0] Payload length (0..16)

Optional command payload (parameters, etc.)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 156 of 211

The first byte is the Message Type (0x10), which identifies this as a command message.
The second and third bytes are 0x1234 (34 12 in little-endian notation), which is the unique command ID. This
value will be compared against the command lookup table and redirected to an appropriate command handler
function if a matching entry was found.
The fourth byte indicates that we have a message payload of 1 byte
The fifth byte is the 1 byte payload: 0xFF

Response Messages

Response messages (Message Type = 0x20) are generated in response to an incoming command, and have the
following structure:

By including the Command ID that this response message is related to, the recipient can more easily correlate
responses and commands. This is useful in situations where multiple commands are sent, and some commands may
take a longer period of time to execute than subsequent commands with a different command ID.

Response messages can only be generate in response to a command message, so the Command ID field should
always be present.

A long response (>16 bytes payload) must be divided into multiple packets. Similar to long commands, the More data
field (bit 7 of byte 3) is used to indicate whether additional packets are available for the same response. On responses
that span more than one packet, the More data bit on the final packet will be set to 0 to indicate that this is the last
packet in the sequence. The SDEP receiver must re-assemble all sub-packets in into one payload when necessary.

If more precise command/response correlation is required a custom protocol should be developed, where a unique
message identifier is included in the payload of each command/response, but this is beyond the scope of this high-
level protocol definition.

A sample response message would be:

0: Message Type (U8)

1+2: Command ID (U16)

3: Payload Len (U8)

4: Payload (...)

0x10

0x34 0x12

0x01

0xFF

Name

Message Type

Command ID

Payload Length

Payload

Type

U8

U16

U8

Meaning

Always '0x20'

Command ID this message is a response to

[7] More data

[6-5] Reserved

[4-0] Payload length (0..16)

Optional response payload (parameters, etc.)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 157 of 211

20 34 12 01 FF

The first byte is the Message Type (0x20), which identifies this as a response message.
The second and third bytes are 0x1234, which is the unique command ID that this response is related to.
The fourth byte indicates that we have a message payload of 1 byte.
The fifth byte is the 1 byte payload: 0xFF

Alert Messages

Alert messages (Message Type = 0x40) are sent whenever an alert condition is present on the system (low battery,
etc.), and have the following structure:

A sample alert message would be:

40 CD AB 04 42 07 00 10

The first byte is the Message Type (0x40), which identifies this as an alert message.
The second and third bytes are 0xABCD, which is the unique alert ID.
The fourth byte indicates that we have a message payload of 4 bytes.
The last four bytes are the actual payload: 0x10000742 in this case, assuming we were transmitting a 32-bit
value in little-endian format.

Standard Alert IDs

0: Message Type (U8)

1+2: Command ID (U16)

3: Payload Len (U8)

4: Payload

0x20

0x34 0x12

0x01

0xFF

Name

Message Type

Alert ID

Payload Length

Payload

Type

U8

U16

U8

...

Meaning

Always '0x40'

Unique ID for the Alert Condition

Payload Length (0..16)

Optional response payload

0: Message Type (U8)

1+2: Alert ID (U16)

3: Payload Length

4+5+6+7: Payload

0x40

0xCD 0xAB

0x04

0x42 0x07 0x00 0x10

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 158 of 211

Alert IDs in the range of 0x0000 to 0x00FF are reserved for standard SDEP alerts, and may not be used by custom
alerts.

The following alerts have been defined as a standard part of the protocol:

Error Messages

Error messages (Message Type = 0x80) are returned whenever an error condition is present on the system, and have
the following structure:

Whenever an error condition is present and the system needs to be alerted (such as a failed request, an attempt to
access a non-existing resource, etc.) the system can return a specific error message with an appropriate Error ID.

A sample error message would be:

80 01 00 00

Standard Error IDs

Error IDs in the range of 0x0000 to 0x00FF are reserved for standard SDEP errors, and may not be used by custom
errors.

The following errors have been defined as a standard part of the protocol:

ID

0x0000

0x0001

0x0002

0x0003

Alert

Reserved

System Reset

Battery Low

Battery Critical

Description

Reserved for future use

The system is about to reset

The battery level is low

The battery level is critically low

Name

Message Type

Error ID

Reserved

Type

U8

U16

U8

Meaning

Always '0x80'

Unique ID for the error condition

Reserved for future use

0: Message ID (U8)

1+2: Error ID (U16)

3: Reserved (U8)

0x80

0x01 0x00

0x00

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 159 of 211

Existing Commands

At present, there are only four SDEP commands implemented in the Bluefruit SPIFRIEND32 firmware:

SDEP_CMDTYPE_INITIALIZE = 0xBEEF
SDEP_CMDTYPE_AT_WRAPPER = 0x0A00
SDEP_CMDTYPE_BLE_UARTTX = 0x0A01
SDEP_CMDTYPE_BLE_UARTRX = 0x0A02

SDEP_CMDTYPE_INITIALIZE can be used to reset the SDEP system when a HW RST line isn't available.

The two SDEP_CMDTYPE_UART* commands send data over the BLE UART service.

SDEP_CMDTYPE_AT_WRAPPER is the command you will use most of the time, which is a wrapper that sends AT
commands over the binary SDEP transport. This isn't terribly efficient, and a binary mechanism would have taken less
bytes per command, but it allows the reuse of all of the earlier AT parser commands without having to implement one
wrapper for every command which would significantly increase the overall code size.

SDEP AT Wrapper Usage

To use the SDEP AT Wrapp you simply send the correct header, along with the AT command you which to send to the
parser. For example:

10-00-0A-03-‘a’-‘t’-‘I’

Message Type: 0x10 (Command)
Command ID: 0x0A00
Command Payload Length: 3 bytes
Command Payload: 'a' + 't' + 'i'

This will cause the ATI command to be executed, which will return basic system information.

ID

0x0000

0x0001

0x0003

Error

Reserved

Invalid CMD ID

Invalid Payload

Description

Reserved for future use

CMD ID wasn't found in the lookup table

The message payload was invalid

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 160 of 211

GATT Service Details

Data in Bluetooth Low Energy is organized around units called 'GATT Services (https://adafru.it/iCp)' and 'GATT
Characteristics'. To expose data to another device, you must instantiate at least one service on your device.

Adafruit's Bluefruit LE Pro modules support some 'standard' services, described below (more may be added in the
future).

UART Service

The UART Service is the standard means of sending and receiving data between connected devices, and simulates a
familiar two-line UART interface (one line to transmit data, another to receive it).

The service is described in detail on the dedicated UART Service (https://adafru.it/iCn) page.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 161 of 211

file:///introduction-to-bluetooth-low-energy/gatt#services-and-characteristics
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/uart-service

UART Service

Base UUID: 6E400001-B5A3-F393- ​E0A9- ​E50E24DCCA9E

This service simulates a basic UART connection over two lines, TXD and RXD.

It is based on a proprietary UART service specification by Nordic Semiconductors. Data sent to and from this service
can be viewed using the nRFUART apps from Nordic Semiconductors for Android and iOS.

Characteristics

Nordic’s UART Service includes the following characteristics:

R = Read; W = Write; N = Notify; I = Indicate

TX (0x0002)

This characteristic is used to send data back to the sensor node, and can be written to by the connected Central
device (the mobile phone, tablet, etc.).

RX (0x0003)

This characteristic is used to send data out to the connected Central device. Notify can be enabled by the connected
device so that an alert is raised every time the TX channel is updated.

This service is available on every Bluefruit LE module and is automatically started during the power-up
sequence.�

Name

TX

RX

Mandatory

Yes

Yes

UUID

0x0002

0x0003

Type

U8[20]

U8[20]

R

X

W

X

N

X

I

Characteristic names are assigned from the point of view of the Central device�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 162 of 211

Software Resources

To help you get your Bluefruit LE module talking to other Central devices, we've put together a number of open source
tools for most of the major platforms supporting Bluetooth Low Energy.

Bluefruit LE Client Apps and Libraries

Adafruit has put together the following mobile or desktop apps and libraries to make it as easy as possible to get your
Bluefruit LE module talking to your mobile device or laptop, with full source available where possible:

Bluefruit LE Connect (https://adafru.it/f4G) (Android/Java)

Bluetooth Low Energy support was added to Android starting with Android 4.3 (though it was only really stable starting
with 4.4), and we've already released Bluefruit LE Connect to the Play Store (https://adafru.it/f4G).

The full source code (https://adafru.it/fY9) for Bluefruit LE Connect for Android is also available on Github to help you
get started with your own Android apps. You'll need a recent version of Android Studio (https://adafru.it/fYa) to use this
project.

Bluefruit LE Connect (https://adafru.it/f4H) (iOS/Swift)

Apple was very early to adopt Bluetooth Low Energy, and we also have an iOS version of the Bluefruit LE
Connect (https://adafru.it/f4H) app available in Apple's app store.

The full swift source code for Bluefruit LE Connect for iOS is also available on Github. You'll need XCode and access to
Apple's developper program to use this project:

Version 1.x source code: https://github.com/adafruit/Bluefruit_LE_Connect (https://adafru.it/ddv)
Version 2.x source code: https://github.com/adafruit/Bluefruit_LE_Connect_v2 (https://adafru.it/o9E)

Version 2.x of the app is a complete rewrite that includes iOS, OS X GUI and OS X command-line tools in a
single codebase.�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 163 of 211

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://github.com/adafruit/Bluefruit_LE_Connect_Android
https://developer.android.com/sdk/index.html
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://github.com/adafruit/Bluefruit_LE_Connect
https://github.com/adafruit/Bluefruit_LE_Connect_v2

Bluefruit LE Connect for OS X (https://adafru.it/o9F) (Swift)

This OS X desktop application is based on the same V2.x codebase as the iOS app, and gives you access to BLE
UART, basic Pin I/O and OTA DFU firmware updates from the convenience of your laptop or mac.

This is a great choice for logging sensor data locally and exporting it as a CSV, JSON or XML file for parsing in another
application, and uses the native hardware on your computer so no BLE dongle is required on any recent mac.

The full source is also available on Github (https://adafru.it/o9E).

Bluefruit LE Command Line Updater for OS X (https://adafru.it/pLF) (Swift)

This experimental command line tool is unsupported and provided purely as a proof of concept, but can be used to
allow firmware updates for Bluefruit devices from the command line.

This utility performs automatic firmware updates similar to the way that the GUI application does, by checking the
firmware version on your Bluefruit device (via the Device Information Service), and comparing this against the firmware
versions available online, downloading files in the background if appropriate.

Simply install the pre-compiled tool via the DMG file (https://adafru.it/pLF) and place it somewhere in the system path,
or run the file locally via './bluefruit' to see the help menu:

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 164 of 211

https://itunes.apple.com/us/app/adafruit-bluefruit-le-connect/id1082414600?mt=12
https://github.com/adafruit/Bluefruit_LE_Connect_v2
https://github.com/adafruit/Bluefruit_LE_Connect_v2/releases/tag/OSXcommandline_0.3
https://github.com/adafruit/Bluefruit_LE_Connect_v2/releases/tag/OSXcommandline_0.3

$./bluefruit
bluefruit v0.3
Usage:
 bluefruit <command> [options...]

Commands:
 Scan peripherals: scan
 Automatic update: update [--enable-beta] [--uuid <uuid>]
 Custom firmware: dfu --hex <filename> [--init <filename>] [--uuid <uuid>]
 Show this screen: --help
 Show version: --version

Options:
 --uuid <uuid> If present the peripheral with that uuid is used. If not present a list of
peripherals is displayed
 --enable-beta If not present only stable versions are used

Short syntax:
 -u = --uuid, -b = --enable-beta, -h = --hex, -i = --init, -v = --version, -? = --help

Deprecated: Bluefruit Buddy (https://adafru.it/mCn) (OS X)

This native OS X application is a basic proof of concept app that allows you to connect to your Bluefruit LE module
using most recent macbooks or iMacs. You can get basic information about the modules and use the UART service to
send and receive data.

The full source for the application is available in the github repo at Adafruit_BluefruitLE_OSX (https://adafru.it/mCo).

ABLE (https://adafru.it/ijB) (Cross Platform/Node+Electron)

ABLE (https://adafru.it/ijB) (Adafruit Bluefruit LE Desktop) is a cross-platform desktop application based on Sandeep
Misty's noble library (https://adafru.it/ijC) and the Electron (https://adafru.it/ijD) project from Github (used by Atom).

It runs on OS X, Windows 7+ and select flavours of Linux (Ubuntu tested locally). Windows 7 support is particularly
interesting since Windows 7 has no native support for Bluetooth Low Energy but the noble library talks directly to
supported Bluetooth 4.0 USB dongles (http://adafru.it/1327) to emulate BLE on the system (though at this stage it's still

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 165 of 211

https://itunes.apple.com/us/app/bluefruit-buddy/id1042412646?mt=12
https://github.com/adafruit/Adafruit_BluefruitLE_OSX
https://github.com/adafruit/adafruit-bluefruit-le-desktop/releases
https://github.com/adafruit/adafruit-bluefruit-le-desktop/releases
https://github.com/sandeepmistry/noble
https://github.com/atom/electron
https://www.adafruit.com/products/1327

in early BETA and drops the connection and takes more care to work with).

This app allows you to collect sensor data or perform many of the same functionality offered by the mobile Bluefruit LE
Connect apps, but on the desktop.

The app is still in BETA, but full source (https://adafru.it/ijE) is available in addition to the easy to use pre-compiled
binaries (https://adafru.it/ijB).

Bluefruit LE Python Wrapper (https://adafru.it/fQF)

As a proof of concept, we've played around a bit with getting Python working with the native Bluetooth APIs on OS X
and the latest version of Bluez on certain Linux targets.

There are currently example sketches showing how to retreive BLE UART data as well as some basic details from the
Device Information Service (DIS).

This isn't an actively support project and was more of an experiment, but if you have a recent Macbook or a Raspberry
Pi and know Python, you might want to look at Adafruit_Python_BluefruitLE (https://adafru.it/fQF) in our github account.

Debug Tools

If your sense of adventure gets the better of you, and your Bluefruit LE module goes off into the weeds, the following
tools might be useful to get it back from unknown lands.

AdaLink (https://adafru.it/fPq) (Python)

These debug tools are provided purely as a convenience for advanced users for device recovery purposes,
and are not recommended unless you're OK with potentially bricking your board. Use them at your own risk.�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 166 of 211

https://github.com/adafruit/adafruit-bluefruit-le-desktop
https://github.com/adafruit/adafruit-bluefruit-le-desktop/releases
https://github.com/adafruit/Adafruit_Python_BluefruitLE
https://github.com/adafruit/Adafruit_Python_BluefruitLE
https://github.com/adafruit/Adafruit_Adalink

This command line tool is a python-based wrapper for programming ARM MCUs using either a Segger J-
Link (https://adafru.it/fYU) or an STLink/V2 (https://adafru.it/ijF). You can use it to reflash your Bluefruit LE module using
the latest firmware from the Bluefruit LE firmware repo (https://adafru.it/edX).

Details on how to use the tool are available in the readme.md file on the main
Adafruit_Adalink (https://adafru.it/fPq) repo on Github.

Completely reprogramming a Bluefruit LE module with AdaLink would require four files, and would look something like
this (using a JLink):

adalink nrf51822 --programmer jlink --wipe
 --program-hex "Adafruit_BluefruitLE_Firmware/softdevice/s110_nrf51_8.0.0_softdevice.hex"
 --program-hex "Adafruit_BluefruitLE_Firmware/bootloader/bootloader_0002.hex"
 --program-hex
"Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex"
 --program-hex
"Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/blefriend32_s110_xxac_0_6_7_150917_blefriend32_signatu
re.hex"

You can also use the AdaLink tool to get some basic information about your module, such as which SoftDevice is
currently programmed or the IC revision (16KB SRAM or 32KB SRAM) via the --info command:

$ adalink nrf51822 -p jlink --info
Hardware ID : QFACA10 (32KB)
Segger ID : nRF51822_xxAC
SD Version : S110 8.0.0
Device Addr : **:**:**:**:**:**
Device ID : ****************

Adafruit nRF51822 Flasher (https://adafru.it/fVL) (Python)

Adafruit's nRF51822 Flasher is an internal Python tool we use in production to flash boards as they go through the test
procedures and off the assembly line, or just testing against different firmware releases when debugging.

It relies on AdaLink or OpenOCD beneath the surface (see above), but you can use this command line tool to flash your
nRF51822 with a specific SoftDevice, Bootloader and Bluefruit firmware combination.

It currently supports using either a Segger J-Link or STLink/V2 via AdaLink, or GPIO on a Raspberry
Pi (https://adafru.it/fVL) if you don't have access to a traditional ARM SWD debugger. (A pre-built version of OpenOCD
for the RPi is included in the repo since building it from scratch takes a long time on the original RPi.)

We don't provide active support for this tool since it's purely an internal project, but made it public just in case it might
help an adventurous customer debrick a board on their own.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 167 of 211

https://www.adafruit.com/search?q=J-Link
https://www.adafruit.com/product/2548
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware
https://github.com/adafruit/Adafruit_Adalink
https://github.com/adafruit/Adafruit_nRF51822_Flasher
https://github.com/adafruit/Adafruit_nRF51822_Flasher#rpi-gpio-requirements

$ python flash.py --jtag=jlink --board=blefriend32 --softdevice=8.0.0 --bootloader=2 --firmware=0.6.7
jtag : jlink
softdevice : 8.0.0
bootloader : 2
board : blefriend32
firmware : 0.6.7
Writing Softdevice + DFU bootloader + Application to flash memory
adalink -v nrf51822 --programmer jlink --wipe --program-hex
"Adafruit_BluefruitLE_Firmware/softdevice/s110_nrf51_8.0.0_softdevice.hex" --program-hex
"Adafruit_BluefruitLE_Firmware/bootloader/bootloader_0002.hex" --program-hex
"Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex" --
program-hex
"Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/blefriend32_s110_xxac_0_6_7_150917_blefriend32_signatu
re.hex"
...

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 168 of 211

�

BLE
FAQ

Can I talk to Classic Bluetooth devices with a Bluefruit LE modules?

No. Bluetooth Low Energy and 'Classic' Bluetooth are both part of the same Bluetooth Core Specification -- defined
and maintained by the Bluetooth SIG -- but they are completely different protocols operating with different physical
constraints and requirements. The two protocols can't talk to each other directly.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 169 of 211

� Can my Bluefruit LE module connect to other Bluefruit LE peripherals

No, the Bluefruit LE firmware from Adafruit is currently peripheral only, and doesn't run in Central mode, which would
cause the module to behave similar to your mobile phone or BLE enabled laptop.

If you required Central support, you should look at the newer nRF52832 based products like the Adafruit Feather
nRF52 Bluefruit LE, which contains a SoftDevice which is capable of running in either Central or Peripheral mode.
The nRF518322 based products (such as the one used in this learning guide) are not capable of running in Central
mode because it isn't supported by the SoftDevice they use, and it isn't possible to update the SoftDevice safely
without special hardware.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 170 of 211

https://www.adafruit.com/product/3406

� I just got my Bluefruit board and when I run a sketch it hangs forever on the 'Connecting...' stage!

There are several possible explanations here, but the first thing to try is to:

1. Disconnect and close the Bluefruit LE Connect app if it's open
2. Disable BLE on your mobile device
3. Restart your Bluefruit sketch and HW
4. Turn BLE back on again (on the mobile device)
5. Open the Bluefruit LE Connect mobile app again and try to connect again

If problems persist, try performing a Factory Reset of your device (see the appropriate learning guide for details on
how to do this since it varies from one board to another).

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 171 of 211

� Why are none of my changes persisting when I reset with the sample sketches?

In order to ensure that the Bluefruit LE modules are in a known state for the Adafruit demo sketches, most of them
perform a factory reset at the start of the sketch.

This is useful to ensure that the sketch functions properly, but has the side effect of erasing any custom user data in
NVM and setting everything back to factory defaults every time your board comes out of reset and the sketch runs.

To disable factory reset, open the demo sketch and find the FACTORYRESET_ENABLE flag and set this to '0', which
will prevent the factory reset from happening at startup.

If you don't see the 'FACTORYRESET_ENABLE' flag in your .ino sketch file, you probably have an older version of the
sketches and may need to update to the latest version via the Arduino library manager.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 172 of 211

� Do I need CTS and RTS on my UART based Bluefruit LE Module?

Using CTS and RTS isn't strictly necessary when using HW serial, but they should both be used with SW serial, or any
time that a lot of data is being transmitted.

The reason behind the need for CTS and RTS is that the UART block on the nRF51822 isn't very robust, and early
versions of the chip had an extremely small FIFO meaning that the UART peripheral was quickly overwhelmed.

Using CTS and RTS significantly improves the reliability of the UART connection since these two pins tell the device
on the other end when they need to wait while the existing buffered data is processed.

To enable CTS and RTS support, go into the BluefruitConfig.h file in your sketch folder and simply assign an
appropriate pin to the macros dedicated to those functions (they may be set to -1 if they aren't currently being used).

Enabling both of these pins should solve any data reliability issues you are having with large commands, or when
transmitting a number of commands in a row.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 173 of 211

� How can I update to the latest Bluefruit LE Firmware?

The easiest way to keep your Bluefruit LE modules up to date is with our Bluefruit LE Connect app for Android or
Bluefruit LE Connect for iOS. Both of these apps include a firmware update feature that allows you to automatically
download the latest firmware and flash your Bluefruit LE device in as safe and painless a manner as possible. You
can also roll back to older versions of the Bluefruit LE firmware using these apps if you need to do some testing on a
previous version.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 174 of 211

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8

� Which firmware version supports 'xxx'?

We regularly release Bluefruit LE firmware images with bug fixes and new features. Each AT command in this
learning guide lists the minimum firmware version required to use that command, but for a higher level overview of
the changes from one firmware version to the next, consult the firmware history page.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 175 of 211

https://github.com/adafruit/Adafruit_BluefruitLE_Firmware
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/history

� Does my Bluefruit LE device support ANCS?

ANCS is on the roadmap for us (most likely in the 0.7.x release family), but we don't currently support it since there
are some unusual edge cases when implementing it as a service.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 176 of 211

� My Bluefruit LE device is stuck in DFU mode ... what can I do?

If your device is stuck in DFU mode for some reason and the firmware was corrupted, you have several options.

First, try a factory reset by holding down the DFU button for about 10 seconds until the CONN LED starts flashing,
then release the DFU button to perform a factory reset.

If this doesn't work, you may need to reflash your firmware starting from DFU mode, which can be done in one of the
following ways:

Bluefruit LE Connect (Android)

Place the module in DFU mode (constant LED blinky)
Open Bluefruit LE Connect
Connect to the 'DfuTarg' device
Once connected, you will see a screen with some basic device information. Click the '...' in the top-right corner
and select Firmware Updates
Click the Use Custom Firmware button
Select the appropriate .hex and .init files (copied from the Bluefruit LE Firmware repo) ... for the BLEFRIEND32
firmware version 0.6.7, this would be:

Hex File: blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex
Init File: blefriend32_s110_xxac_0_6_7_150917_blefriend32_init.dat

Click Start Update

Unfortunately, the iOS app doesn't yet support custom firmware updates from DFU mode yet, but we will get this into
the next release.

Nordic nRF Toolbox

You can also use Nordic's nRF Toolbox application to update the firmware using the OTA bootloader.

On Android:

Open nRF Toolbox (using the latest version)

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 177 of 211

https://github.com/adafruit/Adafruit_BluefruitLE_Firmware

�

Click the DFU icon
Click the Select File button
Select Application from the radio button list, then click OK
Find the appropriate .hex file (ex. 'blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex')
When asked about the 'Init packet', indicate Yes, and select the appropriate *_init.dat file (for example:
'blefriend32_s110_xxac_0_6_7_150917_blefriend32_init.dat').
Click the Select Device button at the bottom of the main screen and find the DfuTarg device, clicking on it
Click the Upload button, which should now be enabled on the home screen
This will begin the DFU update process which should cause the firmware to be updated or restored on your
Bluefruit LE module

On iOS:

Create a .zip file containing the .hex file and init.dat file that you will use for the firmware update. For example:
Rename 'blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex' to application.hex
Rename 'blefriend32_s110_xxac_0_6_7_150917_blefriend32_init.dat' to application.dat

Upload the .zip file containing the application.hex and application.dat files to your iPhone using uTunes,
as described here
Open the nRF Toolbox app (using the latest version)
Click the DFU icon
Click the Select File text label
Switch to User Files to see the .zip file you uploaded above
Select the .zip file (ex. blefriend32_065.zip)
On the main screen select Select File Type
Select application
On the main screen select SELECT DEVICE
Select DfuTarg
Click the Upload button which should now be enabled
This will begin the DFU process and your Bluefruit LE module will reset when the update is complete
If you get the normal 2 or 3 pulse blinky pattern, the update worked!

Adafruit_nRF51822_Flasher

As a last resort, if you have access to a Raspberry Pi, a Segger J-Link or a STLink/V2, you can also try manually
reflashing the entire device, as described in the FAQ above, with further details on the Software Resources page.

How do I reflash my Bluefruit LE module over SWD?

Reflashing Bluefruit LE modules over SWD (ex. switching to the sniffer firmware and back) is at your own risk and
can lead to a bricked device, and we can't offer any support for this operation! You're on your own here, and there
are unfortunately 1,000,000 things that can go wrong, which is why we offer two separate Bluefruit LE Friend boards
-- the sniffer and the normal Bluefruit LE Friend board with the non-sniffer firmware, which provides a bootloader
with fail safe features that prevents you from ever bricking boards via OTA updates.

AdaLink (SWD/JTAG Debugger Wrapper)

Transitioning between the two board types (sniffer and Bluefruit LE module) is unfortunately not a risk-free operation,
and requires external hardware, software and know-how to get right, which is why it isn't covered by our support
team.

That said ... if you're determined to go down that lonely road, and you have a Segger J-Link (which is what we use
internally for production and development), or have already erased your Bluefruit LE device, you should have a look
at AdaLink, which is the tool we use internally to flash the four files required to restore a Bluefruit LE module. (Note:
recent version of AdaLink also support the cheaper STLink/V2, though the J-Link is generally more robust if you are
going to purchase a debugger for long term use.)

The mandatory Intel Hex files are available in the Bluefruit LE Firmware repo. You will need to flash:

An appropriate bootloader image
An appropriate SoftDevice image
The Bluefruit LE firmware image
The matching signature file containing a CRC check so that the bootloader accepts the firmware image above
(located in the same folder as the firmware image)

The appropriate files are generally listed in the version control .xml file in the firmware repository.

If you are trying to flash the sniffer firmware (at your own risk!), you only need to flash a single .hex file, which you

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 178 of 211

file:///introducing-adafruit-ble-bluetooth-low-energy-friend/dfu-on-ios#adding-custom-firmware
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/faq#faq-7
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/software-resources#adafruit-nrf51822-flasher-python
https://www.adafruit.com/search?q=J-Link
https://github.com/adafruit/Adafruit_Adalink
https://www.adafruit.com/products/2548
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware/blob/master/releases.xml

�

can find here. The sniffer doesn't require a SoftDevice image, and doesn't use the fail-safe bootloader -- which is
why changing is a one way and risky operation if you don't have a supported SWD debugger.

Adafruit_nF51822_Flasher

We also have an internal python tool available that sits one level higher than AdaLink (referenced above), and makes
it easier to flash specific versions of the official firmware to a Bluefruit LE module. For details, see the
Adafruit_nRF51822_Flasher repo.

Can I access BETA firmware releases?

The latest versions of the Bluefruit LE Connect applications for iOS and Android allow you to optionally update your
Bluefruit LE modules with pre-release or BETA firmware.

This functionality is primarilly provided as a debug and testing mechanism for support issues in the forum, and
should only be used when trying to identify and resolve specific issues with your modules!

Enabling BETA Releases on iOS

Make sure you have at least version 1.7.1 of Bluefruit LE Connect
Go to the Settings page
Scroll to the bottom of the Settings page until you find Bluefruit LE
Click on the Bluefruit LE icon and enable the Show beta releases switch
You should be able to see any BETA releases available in the firmware repo now when you use Bluefruit LE
Connect

Enabling BETA Releases on Android

Make sure you have the latest version of Bluefruit LE Connect
Open the Bluefruit LE Connect application
Click the "..." icon in the top-right corner of the app's home screen
Select Settings
Scroll down to the Software Updates section and enable Show beta releases
You should be able to see any BETA releases available in the firmware repo now when you use Bluefruit LE
Connect

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 179 of 211

https://github.com/adafruit/Adafruit_BluefruitLE_Firmware/tree/master/sniffer/1.0.1
https://github.com/adafruit/Adafruit_nRF51822_Flasher

� Why can't I see my Bluefruit LE device after upgrading to Android 6.0?

In Android 6.0 there were some important security changes that affect Bluetooth Low Energy devices. If location
services are unavailable (meaning the GPS is turned off) you won't be able to see Bluetooth Low Energy devices
advertising either. See this issue for details.

Be sure to enable location services on your Android 6.0 device when using Bluefruit LE Connect or other Bluetooth
Low Energy applications with your Bluefruit LE modules.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 180 of 211

http://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-hardware-id
https://code.google.com/p/android/issues/detail?id=190372&q=GPS&colspec=ID%20Type%20Status%20Owner%20Summary%20Stars

� What is the theoretical speed limit for BLE?

This depends on a variety of factors, and is determined by the capabilities of the central device (the mobile phone,
etc.) as much as the peripheral.

Taking the HW limits on the nR51822 into account (max 6 packets per connection interval, and a minimum
connection interval of 7.5ms) you end up with the following theoretical limits on various mobile operating systems:

iPhone 5/6 + IOS 8.0/8.1
6 packets * 20 bytes * 1/0.030 s = 4 kB/s = 32 kbps
iPhone 5/6 + IOS 8.2/8.3
3 packets * 20 bytes * 1/0.030 s = 2 kB/s = 16 kbps
iPhone 5/6 + IOS 8.x with nRF8001
1 packet * 20 bytes * 1/0.030 s = 0.67 kB/s = 5.3 kbps
Nexus 4
4 packets * 20 bytes * 1/0.0075 s = 10.6 kB/s = 84 kbps
Nordic Master Emulator Firmware (MEFW) with nRF51822 0.9.0
1 packet * 20 bytes * 1/0.0075 = 2.67 kB/s = 21.33 kbps
Nordic Master Emulator Firmware (MEFW) with nRF51822 0.11.0
6 packets * 20 bytes * 1/0.0075 = 16 kB/s = 128 kbps

There are also some limits imposed by the Bluefruit LE firmware, but we are actively working to significantly improve
the throughput in the upcoming 0.7.0 release, which will be available Q2 2016. The above figures are useful as a
theoretical maximum to decide if BLE is appropriate for you project or not.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 181 of 211

�

UPDATE: For more specific details on the limitations of various Android versions and phones, see this helpful post
from Nordic Semiconductors.

Can my Bluefruit board detect other Bluefruit boards or Central devices?

No. All of our Bluefruit LE modules currently operate in peripheral mode, which means they can only advertise their
own existence via the advertising payload. The central device (usually your phone or laptop) is responsible for
listening for these advertising packets, starting the connection process, and inititating any transactions between the
devices. There is no way for a Bluefruit module to detect other Bluefruit modules or central devices in range, they
can only send their own advertising data out and wait for a connection request to come in.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 182 of 211

https://devzone.nordicsemi.com/blogs/1046/what-to-keep-in-mind-when-developing-your-ble-andr/

� How can I determine the distance between my Bluefruit module and my phone in m/ft?

The short answer is: you can't.

RF devices normally measure signal strength using RSSI, which stands for Received Signal Strength Indicator, which
is measured in dBm. The closer the devices are the strong the RSSI value generally is (-90dBm is much weaker than
-60dBm, for example), but there is no reliable relationship between RSSI values in dBm and distance in the real
world. If there is a wall between devices, RSSI will fall. If there is a lot of interference on the same 2.4GHz band,
RSSI will fall. Depending on the device, if you simply change the antenna orientation, RSSI will fall. You can read the
RSSI value between two connected devices with the AT+BLEGETRSSI command, but there are no meaningful and

repeatable conclusions that can be drawn from this value about distance other than perhaps 'farther' or 'closer' in a
very loose sense of the terms.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 183 of 211

� How far away from my phone can I have my Bluefruit LE module?

This depends on a number of factors beyond the module itself such as antenna orientation, the antenna design on
the phone, transmit power on the sending node, competing traffic in the same 2.4GHz bandwidth, obstacles
between end points, etc.

It could be as low as a couple meters up to about 10 meters line of sight, but generally Bluetooth Low Energy is
designed for very short range and will work best in the 5-6 meter or less range for reliable communication, assuming
normal Bluefruit firmware settings.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 184 of 211

� How many GATT services and characteristics can I create?

For firmware 0.7.0 and higher, the following limitations are present:

Maximum number of services: 10
Maximum number of characteristics: 30
Maximum buffer size for each characteristic: 32 bytes
Maximum number of CCCDs: 16

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 185 of 211

� Is it possible to modify or disable the built in GATT services and characteristics (DIS, DFU, etc.)?

No, unfortunately you can't. We rely on the Device Information Service (DIS) contents to know which firmware and
bootloader version you are running, and wouldn't be able to provide firmware updates without being able to trust
this information, which i why it's both mandatory and read only.

Similarly, the DFU service is mandatory to maintain over the air updates and disabling it would create more problems
that it's presence would cause.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 186 of 211

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.device_information.xml

� How can I use BlueZ and gatttool with Bluefruit modules?

BlueZ has a bit of a learning curve associated with it, but you can find some notes below on one option to send and
receive data using the BLE UART Service built into all of our Bluefruit LE modules and boards.

These commands may change with different versions of BlueZ. Version 5.21 was used below.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 187 of 211

Initialise the USB dongle
$ sudo hciconfig hci0 up

Scan for the UART BLE device
$ sudo hcitool lescan
 D6:4E:06:4F:72:86 UART

Start gatttool, pointing to the UART device found above
$ sudo gatttool -b D6:4E:06:4F:72:86 -I -t random --sec-level=high

 [D6:4E:06:4F:72:86][LE]> connect
 Attempting to connect to D6:4E:06:4F:72:86
 Connection successful

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 188 of 211

 Connection successful

Scan for primary GATT Services
 [D6:4E:06:4F:72:86][LE]> primary
 attr handle: 0x0001, end grp handle: 0x0007 uuid: 00001800-0000-1000-8000-00805f9b34fb
 attr handle: 0x0008, end grp handle: 0x0008 uuid: 00001801-0000-1000-8000-00805f9b34fb
 attr handle: 0x0009, end grp handle: 0x000e uuid: 6e400001-b5a3-f393-e0a9-e50e24dcca9e
 attr handle: 0x000f, end grp handle: 0xffff uuid: 0000180a-0000-1000-8000-00805f9b34fb

Get the handles for the entries in the UART service (handle 0x0009)
 [D6:4E:06:4F:72:86][LE]> char-desc
 handle: 0x0001, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x0002, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0003, uuid: 00002a00-0000-1000-8000-00805f9b34fb
 handle: 0x0004, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0005, uuid: 00002a01-0000-1000-8000-00805f9b34fb
 handle: 0x0006, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0007, uuid: 00002a04-0000-1000-8000-00805f9b34fb
 handle: 0x0008, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x0009, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x000a, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x000b, uuid: 6e400002-b5a3-f393-e0a9-e50e24dcca9e
 handle: 0x000c, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x000d, uuid: 6e400003-b5a3-f393-e0a9-e50e24dcca9e
 handle: 0x000e, uuid: 00002902-0000-1000-8000-00805f9b34fb
 handle: 0x000f, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x0010, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0011, uuid: 00002a27-0000-1000-8000-00805f9b34fb

6e400002 (handle 0x000b) = TX characteristic
6e400003 (handle 0x000d) = RX characteristic

Optional (but maybe helpful) ... scan for CCCD entries
 [D6:4E:06:4F:72:86][LE]> char-read-uuid 2902
 handle: 0x000e value: 00 00

Enable notifications on the RX characteristic (CCCD handle = 0x000e)
0100 = get notifications
0200 = get indications
0300 = get notifications + indications
0000 = disable notifications + indications
 [D6:4E:06:4F:72:86][LE]> char-write-req 0x000e 0100
 Characteristic value was written successfully

Just to make sure it was updated
 [D6:4E:06:4F:72:86][LE]> char-read-hnd 0x000e
 Characteristic value/descriptor: 01 00

Writing "test" in the Serial Monitor of the Arduino sketch should
cause this output not that notifications are enabled:
 Notification handle = 0x000d value: 74 65 73 74

Write something to the TX characteristic (handle = 0x000b)
This should cause E F G H to appear in the Serial Monitor
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 45
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 46
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 47
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 48

To send multiple bytes

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 189 of 211

�

To send multiple bytes
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000B 707172737475

If you are running the callbackEcho sketch and notifications
are enabled you should get this response after the above cmd:
 Notification handle = 0x000d value: 70 71 72 73 74 75

If you just want to enable constant listening, enter the following command from the CLI:
$ sudo gatttool -b D6:4E:06:4F:72:86 -t random --char-write-req -a 0x000e -n 0100 --listen

This should give us the following output as data is written on the Uno,
though we can't send anything back:
 Characteristic value was written successfully
 Notification handle = 0x000d value: 74 65 73 74
 Notification handle = 0x000d value: 6d 6f 72 65 20 74 65 73 74

Can I use the IRQ pin to wake my MCU up from sleep when BLE UART data is available?

No, on SPI-based boards the IRQ pin is used to indicate that an SDEP response is available to an SDEP command.
For example, when you sent the `AT+BLEUARTRX` command as an SDEP message, the Bluefruit firmware running on
the nRF51822 will parse the message, prepare an SDEP response, and trigger the IRQ pin to tell the MCU that the
response is ready. This is completely independant from the BLE UART service, which doesn't have interrupt
capability at present.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 190 of 211

� Can I also update the sketch running on the device using Bluefruit LE Connect?

No, only the core firmware can be updated over the air. Sketches need to be loaded using the Arduino IDE and
serial bootloader.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 191 of 211

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 192 of 211

DFU Bluefruit Updates

For videos on the latest update procedure using Bluefruit LE Connect see:

iOS: https://learn.adafruit.com/introducing-adafruit-ble-bluetooth-low-energy-friend/dfu-on-
ios (https://adafru.it/iCx)
Android: https://learn.adafruit.com/introducing-adafruit-ble-bluetooth-low-energy-friend/dfu-on-android-4-dot-3-
plus (https://adafru.it/oSD)

You can reprogram the Bluefruit LE module itself over-the-air using an Android or iOS phone/tablet. This doesn't
reprogram the ATmega32u4 in the Bluefruit Micro, only the BLE module itself. Since its not a common thing to do, its a
little challenging to do.

You will need to disconnect/unpower the Bluefruit Micro, connect a wire temporarily between the DFU pin and GND
and then power up the board via USB or battery.

The red LED will blink continuously, letting you know it's in DFU mode. Then follow our guide for field updating the
firmware (https://adafru.it/iCQ)

The video below is out of date and applies to early versions of the board before the Bluefruit LE Connect
apps were available for iOS, Android and OS X in the respective app stores. To keep your device up to date,
simply install and open the Bluefruit LE Connect app and connect to your Bluefruit device. If a firmware
update is available, it will be automatically proposed, and the entire update process will be handled
transparently for you.

�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 193 of 211

file:///introducing-adafruit-ble-bluetooth-low-energy-friend/dfu-on-ios
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/dfu-on-android-4-dot-3-plus
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/field-updates

Downloads

PCB Files on GitHub (https://adafru.it/nQD)
MDBT Datasheet (https://adafru.it/oYE)
Fritzing object available in the Adafruit Fritzing Library (https://adafru.it/aP3)

https://adafru.it/z3d

https://adafru.it/z3d

Schematic

Click to embiggen

We've changed the regulator from an SPX3819 to AP2112 - it has lower dropout but cannot handle higher than 6V

Fabrication Print

Dimensions in inches

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 194 of 211

https://github.com/adafruit/Adafruit-Feather-32u4-Bluefruit-LE-PCB
https://cdn-shop.adafruit.com/product-files/2267/MDBT40-P256R.pdf
https://github.com/adafruit/Fritzing-Library
https://cdn-learn.adafruit.com/assets/assets/000/046/194/original/Feather_32u4_Bluefruit_v2.3.pdf?1504804907

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 195 of 211

Device Recovery

Sometimes, bad things unfortunately happen. Thankfully, 99% of the time it's purely a SW issue and the Bluefruit
devices have a robust bootloader with some fail safes that can almost always recover your device.

How to Recover a Bluefruit Board

1. Force DFU Mode at Startup

The first step is to force your board into a special bootloader mode, which will prevent any faulty user sketches or
corrupted config data from causing problems.

Connect the DFU pin to GND with a jumper cable, or if your board has a DFU button hold the button down when
adding power to your board (connecting the USB cable, etc.)
Once the device is powered, you should see a faster DFU MODE blinky pattern that lets you know you are in
bootloader mode.
Now remove the jumper cable between DFU and GND (to prevent going into DFU mode when you reset)

2. Update the Bluefruit Firmware

Next, update your device to the latest Bluefruit firmware using the Bluefruit LE Connect app. We regularly fix bugs, and
it's always a good idea to be on the latest release.

You can perform a firmware update in DFU mode, although the Bluefruit board may appear as DfuTarg in the Bluefruit
LE Connect app, and you will will need to select the right firmware 'family' for you board.

Because bootloader mode is a fail safe mode and has a small subset of Bluefruit's features, we can't tell the Bluefruit
LE Connect app very many details about our HW. As such, you will need to indicate which firmware type to flash ...
specifically, whether to flash the UART of SPI based firmware. Be sure to select the right one, based on your product
and the table below:

BLEFRIEND32 Firmware (UART, 32KB SRAM)

Bluefruit UART Friend V2 (https://adafru.it/edl)
Bluefruit LE UART Friend (https://adafru.it/tYD)

BLESPIFRIEND Firmware (SPI)

Bluefruit LE SPI Friend (https://adafru.it/fLp)
Bluefruit LE Shield (http://adafru.it/2746)
Bluefruit LE Micro (https://adafru.it/tYE)
Feather 32u4 Bluefruit LE (https://adafru.it/tYF)
Feather M0 Bluefruit LE (http://adafru.it/2995)

3. Flash a Test Sketch

Once the core Bluefruit firmware has been updated, flash a test sketch to the device from the Arduino IDE, such as the
following blinky code:

Remove the jumper cable between DFU and GND once you are in DFU mode so that you exit it during the
next reset!�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 196 of 211

https://www.adafruit.com/product/2267
file:////tmp/Bluefruit%20LE%20UART%20Friend
https://www.adafruit.com/product/2633
https://www.adafruit.com/products/2746
file:////tmp/Bluefruit%20LE%20Micro
file:////tmp/Feather%2032u4%20Bluefruit%20LE
https://www.adafruit.com/products/2995

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin LED_BUILTIN as an output.
 pinMode(LED_BUILTIN, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

4. Perform a Factory Reset

Once the core Bluefruit firmware has been updated, the final step is to perform a factory reset.

With the board still powered up, connect the DFU pin to GND
Leave the pin set to GND (or hold the DFU button down) for >5 seconds until the BLUE status LED starts to blink
Remove the DFU jumper cable or release the DFU button

This will cause a factory reset which will wipe all config data, and should restore your board, getting you back to a
normal state in most situations!

Still Having Problems?

Hop on over to our support forums (https://adafru.it/dYq) clearly explaining your problem along with the following
information, and, we'll be happy to help:

You product name and ideally the product ID
The Bluefruit firmware version you are using (available at the top of the Serial Monitor output on most example
sketches)
The Operating System your are using
The Arduino IDE version you are using

Providing the above information in your first post will skip a round of two of back and forth and you'll get an answer
from us quicker, saving everyone time and effort!

Be sure to see the FAQ section of this learning guide as well, which has answer to many common problems!�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 197 of 211

https://forums.adafruit.com/

�

Feather HELP!

My ItsyBitsy/Feather stopped working when I unplugged the USB!

A lot of our example sketches have a

while (!Serial);

line in setup(), to keep the board waiting until the USB is opened. This makes it a lot easier to debug a program
because you get to see all the USB data output. If you want to run your Feather without USB connectivity, delete or
comment out that line

Even though this FAQ is labeled for Feather, the questions apply to ItsyBitsy's as well!�

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 198 of 211

� My Feather never shows up as a COM or Serial port in the Arduino IDE

A vast number of Itsy/Feather 'failures' are due to charge-only USB cables

We get upwards of 5 complaints a day that turn out to be due to charge-only cables!

Use only a cable that you know is for data syncing

If you have any charge-only cables, cut them in half throw them out. We are serious! They tend to be low quality in
general, and will only confuse you and others later, just get a good data+charge USB cable

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 199 of 211

� Ack! I "did something" and now when I plug in the Itsy/Feather, it doesn't show up as a device
anymore so I cant upload to it or fix it...

No problem! You can 'repair' a bad code upload easily. Note that this can happen if you set a watchdog timer or
sleep mode that stops USB, or any sketch that 'crashes' your board

1. Turn on verbose upload in the Arduino IDE preferences
2. Plug in Itsy or Feather 32u4/M0, it won't show up as a COM/serial port that's ok
3. Open up the Blink example (Examples->Basics->Blink)
4. Select the correct board in the Tools menu, e.g. Feather 32u4, Feather M0, Itsy 32u4 or M0 (physically check

your board to make sure you have the right one selected!)
5. Compile it (make sure that works)
6. Click Upload to attempt to upload the code
7. The IDE will print out a bunch of COM Ports as it tries to upload. During this time, double-click the reset button,

you'll see the red pulsing LED that tells you its now in bootloading mode
8. The board will show up as the Bootloader COM/Serial port
9. The IDE should see the bootloader COM/Serial port and upload properly

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 200 of 211

� I can't get the Itsy/Feather USB device to show up - I get "USB Device Malfunctioning" errors!

This seems to happen when people select the wrong board from the Arduino Boards menu.

If you have a Feather 32u4 (look on the board to read what it is you have) Make sure you select Feather 32u4 for
ATMega32u4 based boards! Do not use anything else, do not use the 32u4 breakout board line.

If you have a Feather M0 (look on the board to read what it is you have) Make sure you select Feather M0 - do not

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 201 of 211

�

use 32u4 or Arduino Zero

If you have a ItsyBitsy M0 (look on the board to read what it is you have) Make sure you select ItsyBitsy M0 - do not
use 32u4 or Arduino Zero

I'm having problems with COM ports and my Itsy/Feather 32u4/M0

Theres two COM ports you can have with the 32u4/M0, one is the user port and one is the bootloader port. They
are not the same COM port number!

When you upload a new user program it will come up with a user com port, particularly if you use Serial in your user

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 202 of 211

�

program.

If you crash your user program, or have a program that halts or otherwise fails, the user COM port can disappear.

When the user COM port disappears, Arduino will not be able to automatically start the bootloader and upload
new software.

So you will need to help it by performing the click-during upload procedure to re-start the bootloader, and upload
something that is known working like "Blink"

I don't understand why the COM port disappears, this does not happen on my Arduino UNO!

UNO-type Arduinos have a seperate serial port chip (aka "FTDI chip" or "Prolific PL2303" etc etc) which handles all
serial port capability seperately than the main chip. This way if the main chip fails, you can always use the COM port.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 203 of 211

�

M0 and 32u4-based Arduinos do not have a seperate chip, instead the main processor performs this task for you. It
allows for a lower cost, higher power setup...but requires a little more effort since you will need to 'kick' into the
bootloader manually once in a while

I'm trying to upload to my 32u4, getting "avrdude: butterfly_recv(): programmer is not responding"
errors

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 204 of 211

This is likely because the bootloader is not kicking in and you are accidentally trying to upload to the wrong COM
port

The best solution is what is detailed above: manually upload Blink or a similar working sketch by hand by manually
launching the bootloader

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 205 of 211

�I'm trying to upload to my Feather M0, and I get this error "Connecting to programmer: .avrdude:
butterfly_recv(): programmer is not responding"

You probably don't have Feather M0 selected in the boards drop-down. Make sure you selected Feather M0.

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 206 of 211

� I'm trying to upload to my Feather and i get this error "avrdude: ser_recv(): programmer is not
responding"

You probably don't have Feather M0 / Feather 32u4 selected in the boards drop-down. Make sure you selected
Feather M0 (or Feather 32u4).

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 207 of 211

� I attached some wings to my Feather and now I can't read the battery voltage!

Make sure your Wing doesn't use pin #9 which is the analog sense for the lipo battery!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 208 of 211

� The yellow LED Is flickering on my Feather, but no battery is plugged in, why is that?

The charge LED is automatically driven by the Lipoly charger circuit. It will try to detect a battery and is expecting
one to be attached. If there isn't one it may flicker once in a while when you use power because it's trying to charge
a (non-existant) battery.

It's not harmful, and its totally normal!

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 209 of 211

© Adafruit Industries https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le Page 210 of 211

© Adafruit Industries Last Updated: 2020-06-15 03:51:24 PM EDT Page 211 of 211

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Adafruit:

 2829

https://www.mouser.com/adafruit
https://www.mouser.com/access/?pn=2829

	Guide Contents
	Overview
	Pinouts
	Power Pins
	Logic pins
	Bluefruit LE Module + Indicator LEDs
	Other Pins!
	Top Side
	Bottom Side
	SWD Debug Input
	Factory Reset

	Assembly
	Header Options!
	Soldering in Plain Headers
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Soldering on Female Header
	Tape In Place
	Flip & Tack Solder
	And Solder!

	Power Management
	Battery + USB Power
	Power supplies
	Measuring Battery
	ENable pin
	Alternative Power Options
	Arduino IDE Setup
	https://adafruit.github.io/arduino-board-index/package_adafruit_index.json

	Using with Arduino IDE
	Install Drivers (Windows 7 Only)
	Blink
	Manually bootloading
	Ubuntu & Linux Issue Fix

	Installing BLE Library
	Install the Adafruit nRF51 BLE Library
	Run first example
	Uploading to the Feather Bluefruit LE
	Uploading to a brand new board/Upload failures

	Run the sketch
	AT command testing
	Configuration!
	Which board do you have?
	Bluefruit Micro or Feather 32u4 Bluefruit
	Feather M0 Bluefruit LE
	Bluefruit LE SPI Friend
	Bluefruit LE UART Friend or Flora BLE

	Configure the Pins Used
	Common settings:
	Software UART
	Hardware UART
	Mode Pin
	SPI Pins
	Software SPI Pins

	Select the Serial Bus
	UART Based Boards (Bluefruit LE UART Friend & Flora BLE)
	SPI Based Boards (Bluefruit LE SPI Friend)

	BLEUart
	Opening the Sketch
	Configuration
	Running the Sketch
	HIDKeyboard
	Opening the Sketch
	Configuration
	Running the Sketch
	Bonding the HID Keyboard
	Android
	iOS
	OS X
	Controller
	Opening the Sketch
	Configuration
	Running the Sketch
	Using Bluefruit LE Connect in Controller Mode
	Streaming Sensor Data
	Control Pad Module
	Color Picker Module
	HeartRateMonitor
	Opening the Sketch
	Configuration
	If Using Hardware or Software UART

	Running the Sketch
	nRF Toolbox HRM Example
	CoreBluetooth HRM Example
	UriBeacon
	Opening the Sketch
	Configuration
	Running the Sketch
	HALP!
	When using the Bluefruit Micro or a Bluefruit LE with Flora/Due/Leonardo/Micro the examples dont run?
	I can't seem to "Find" the Bluefruit LE!

	AT Commands
	Test Command Mode '=?'
	Write Command Mode '=xxx'
	Execute Mode
	Read Command Mode '?'
	Standard AT
	AT
	ATI
	ATZ
	ATE
	+++
	General Purpose
	AT+FACTORYRESET
	AT+DFU
	AT+HELP
	AT+NVMWRITE
	AT+NVMREAD
	AT+MODESWITCHEN
	Hardware
	AT+BAUDRATE
	AT+HWADC
	AT+HWGETDIETEMP
	AT+HWGPIO
	AT+HWGPIOMODE
	AT+HWI2CSCAN
	AT+HWVBAT
	AT+HWRANDOM
	AT+HWMODELED
	AT+UARTFLOW
	Beacon
	AT+BLEBEACON
	AT+BLEURIBEACON
	Deprecated: AT+EDDYSTONEENABLE
	AT+EDDYSTONEURL
	AT+EDDYSTONECONFIGEN
	AT+EDDYSTONESERVICEEN
	AT+EDDYSTONEBROADCAST
	BLE Generic
	AT+BLEPOWERLEVEL
	AT+BLEGETADDRTYPE
	AT+BLEGETADDR
	AT+BLEGETPEERADDR
	AT+BLEGETRSSI
	BLE Services
	AT+BLEUARTTX
	TX FIFO Buffer Handling

	AT+BLEUARTTXF
	AT+BLEUARTRX
	AT+BLEUARTFIFO
	AT+BLEKEYBOARDEN
	AT+BLEKEYBOARD
	AT+BLEKEYBOARDCODE
	Modifier Values
	HID Keyboard Codes

	AT+BLEHIDEN
	AT+BLEHIDMOUSEMOVE
	AT+BLEHIDMOUSEBUTTON
	AT+BLEHIDCONTROLKEY
	AT+BLEHIDGAMEPADEN
	AT+BLEHIDGAMEPAD
	AT+BLEMIDIEN
	AT+BLEMIDIRX
	AT+BLEMIDITX
	AT+BLEBATTEN
	AT+BLEBATTVAL
	BLE GAP
	AT+GAPCONNECTABLE
	AT+GAPGETCONN
	AT+GAPDISCONNECT
	AT+GAPDEVNAME
	AT+GAPDELBONDS
	AT+GAPINTERVALS
	AT+GAPSTARTADV
	AT+GAPSTOPADV
	AT+GAPSETADVDATA
	BLE GATT
	GATT Limitations
	AT+GATTCLEAR
	AT+GATTADDSERVICE
	AT+GATTADDCHAR
	AT+GATTCHAR
	AT+GATTLIST
	AT+GATTCHARRAW
	Debug
	AT+DBGMEMRD
	AT+DBGNVMRD
	AT+DBGSTACKSIZE
	AT+DBGSTACKDUMP
	History
	Version 0.7.7
	Version 0.7.0
	Version 0.6.7
	Version 0.6.6
	Version 0.6.5
	Version 0.6.2
	Version 0.5.0
	Version 0.4.7
	Version 0.3.0
	Command Examples
	Heart Rate Monitor Service
	Python Script

	SDEP (SPI Data Transport)
	SDEP Overview
	SPI Setup
	SPI Hardware Requirements
	IRQ Pin
	SDEP Packet and SPI Error Identifier
	Sample Transaction

	SDEP (Simple Data Exchange Protocol)
	Endianness
	Message Type Indicator
	SDEP Data Transactions
	Message Types
	Command Messages
	Response Messages
	Alert Messages
	Standard Alert IDs

	Error Messages
	Standard Error IDs

	Existing Commands
	SDEP AT Wrapper Usage

	GATT Service Details
	UART Service

	UART Service
	Characteristics
	TX (0x0002)
	RX (0x0003)

	Software Resources
	Bluefruit LE Client Apps and Libraries
	Bluefruit LE Connect (https://adafru.it/f4G) (Android/Java)
	Bluefruit LE Connect (https://adafru.it/f4H) (iOS/Swift)

	Bluefruit LE Connect for OS X (https://adafru.it/o9F) (Swift)
	Bluefruit LE Command Line Updater for OS X (https://adafru.it/pLF) (Swift)
	Deprecated: Bluefruit Buddy (https://adafru.it/mCn) (OS X)
	ABLE (https://adafru.it/ijB) (Cross Platform/Node+Electron)
	Bluefruit LE Python Wrapper (https://adafru.it/fQF)

	Debug Tools
	AdaLink (https://adafru.it/fPq) (Python)
	Adafruit nRF51822 Flasher (https://adafru.it/fVL) (Python)

	BLE FAQ
	Can I talk to Classic Bluetooth devices with a Bluefruit LE modules?
	Can my Bluefruit LE module connect to other Bluefruit LE peripherals
	I just got my Bluefruit board and when I run a sketch it hangs forever on the 'Connecting...' stage!
	Why are none of my changes persisting when I reset with the sample sketches?
	Do I need CTS and RTS on my UART based Bluefruit LE Module?
	How can I update to the latest Bluefruit LE Firmware?
	Which firmware version supports 'xxx'?
	Does my Bluefruit LE device support ANCS?
	My Bluefruit LE device is stuck in DFU mode ... what can I do?
	Bluefruit LE Connect (Android)
	Nordic nRF Toolbox

	How do I reflash my Bluefruit LE module over SWD?
	Adafruit_nRF51822_Flasher

	Can I access BETA firmware releases?
	Why can't I see my Bluefruit LE device after upgrading to Android 6.0?
	What is the theoretical speed limit for BLE?
	Can my Bluefruit board detect other Bluefruit boards or Central devices?
	How can I determine the distance between my Bluefruit module and my phone in m/ft?
	How far away from my phone can I have my Bluefruit LE module?
	How many GATT services and characteristics can I create?
	Is it possible to modify or disable the built in GATT services and characteristics (DIS, DFU, etc.)?
	How can I use BlueZ and gatttool with Bluefruit modules?
	Can I use the IRQ pin to wake my MCU up from sleep when BLE UART data is available?
	Can I also update the sketch running on the device using Bluefruit LE Connect?

	DFU Bluefruit Updates
	Downloads
	Schematic
	Fabrication Print
	Device Recovery
	How to Recover a Bluefruit Board
	1. Force DFU Mode at Startup
	2. Update the Bluefruit Firmware
	BLEFRIEND32 Firmware (UART, 32KB SRAM)
	BLESPIFRIEND Firmware (SPI)
	3. Flash a Test Sketch
	4. Perform a Factory Reset

	Still Having Problems?
	Feather HELP!
	My ItsyBitsy/Feather stopped working when I unplugged the USB!
	My Feather never shows up as a COM or Serial port in the Arduino IDE
	Ack! I "did something" and now when I plug in the Itsy/Feather, it doesn't show up as a device anymore so I cant upload to it or fix it...
	I can't get the Itsy/Feather USB device to show up - I get "USB Device Malfunctioning" errors!
	I'm having problems with COM ports and my Itsy/Feather 32u4/M0
	I don't understand why the COM port disappears, this does not happen on my Arduino UNO!
	I'm trying to upload to my 32u4, getting "avrdude: butterfly_recv(): programmer is not responding" errors
	I'm trying to upload to my Feather M0, and I get this error "Connecting to programmer: .avrdude: butterfly_recv(): programmer is not responding"
	I'm trying to upload to my Feather and i get this error "avrdude: ser_recv(): programmer is not responding"
	I attached some wings to my Feather and now I can't read the battery voltage!
	The yellow LED Is flickering on my Feather, but no battery is plugged in, why is that?

